Testing of Pipes

Pipes transport granulated materials, liquids, and gases, both aggressive and neutral in nature. They are used in wide variety of environments, including nuclear power stations, in and above the ground for transporting oil and natural gas, in engines for fuel delivery and exhaust gases, and in the chemical industry for producing raw materials. This causes them to be manufactured from the most diverse range of materials and alloys, using various production processes.

Tensile Tests

The methods used to test tensile specimens taken from or consisting of pipes vary according to the product form. Small, thin pipes are crushed at the ends for a sufficient length and then pulled, while cores are used in larger diameter pipes to prevent predamage through crushing. With larger pipes, standardized specimens are produced from material removed from the wall of the pipe. It is possible that specimens (taken longitudinally) may display the curve of the pipe radius; for reliable, predamage-free testing this radius should be compensated for with suitably shaped counterpieces. ZwickRoell offers tensile testing machines from 500 N to 2500 kN with the right specimen grips.

Hardness Testing

Hardness testing on pipes and large pipes are performed primarily to examine two aspects: Testing of weld seams and determination of the basic hardness of the pipe Depending on the application, hardness tests are performed to ISO 6506-1, (Brinell), ISO 6507-1 (Vickers), ISO 6508-1 (Rockwell), ASTM E10 (Brinell), ASTM E384 (Vickers and Knoop), and ASTM E18 (Rockwell). 

Testing and determining the hardness average value of the pipe wall

One aspect of hardness testing is the testing and determination of the hardness average value of the pipe wall after manufacture. Pipes are manufactured using a wide variety of methods, among them rolling processes. Since rolling is a thermo-mechanical process with which mechanical characteristics, along with the pipe wall thickness and diameter of the pipes, can be tested, hardness testing is used for fast determination of mechanical-technological properties. 

Determining the grain structure of metallographic constituents with hardness tests

Another aspect of hardness testing is the determination of the grain structure by performing hardness tests on metallographic constituents. Due to the small size of metallographic constituents, hardness testers with small to very small forces are used—generally speaking, stationary microhardness testers with indention sizes and depths that can be adjusted via the indention force to the dimensions of the metallographic constituents. 

Testing of Weld Seams

The ZwickRoell product portfolio offers hardness testers and devices for all test methods. ZwickRoell hardness testers and devices meet the requirements of all common international standards and can also be calibrated to international standards. As a calibration lab, ZwickRoell is accredited for the calibration of hardness testers by the German national accreditation body, DAkkS. 
ZHVµ-A with motorized X-Y table

Compression Tests

Crush tests are carried out on pipes to test their strength and ductility. These characteristics can be of considerable significance in situations where the integrity of pipework must not be affected by earthquakes, especially when pipes are laid directly in the ground. The test areas of the ZwickRoell materials testing machine can be set up in accordance with pipe diameters to make handling of specimens both simple and time-saving.

Drop Weight Tests

For large oil and gas mains, specimens from the pipe wall are subjected to a drop weight test to API 5L. Specimens with the height of the original wall thickness and widths of several centimeters are subjected to abrupt loading via a vertically falling weight with a tup. The energy (weight and release height) is set so that the specimen breaks, allowing the fracture surface to be assessed visually. ZwickRoell produces drop weight testers up to 100,000 J for this type of test.

New edition of DIN EN ISO 6892-1 – Metal tensile test at ambient temperature

In February 2017, the second edition of the standard DIN EN ISO 6892-1 for metal tensile tests was published as a German national standard. The national standard is the translation of the second edition of the international standard ISO 6892-1, which was already published in 2016.
ISO 6892, ASTM E8 tensile test on metals