An introduction to composites testing

Dr. Hannes Körber Global Industry Manager Composites

Agenda

• Introduction

1.

- 2. Tensile, compression, shear, flexure and ILSS testing
- 3. Static testing machines
- 4. Strain and displacement measuring systems

Applications of composite materials

With excellent weight-specific mechanical properties and fatigue response and a design flexibility, due to a variety of fibers, matrix systems and fiber architectures, composites are used in many application areas.

Other application areas:

- Construction
- Sports & Leisure
- Electronics
- Oil & Gas

In addition to the fiber type, matrix system and textile architecture, the mechanical material response is greatly influenced by the composite manufacturing process.

Materials

- Different fiber types
- Different resin systems
- Different textile architectures

Processes

- Autoclave curing of thermoset prepreg composites
- Resin Transfer Molding (RTM) at low or high pressure
- Vacuum Assisted Resin Infusion (VARI)
- Automated Fiber Placement (AFP)
- Automated Tape Laying (ATL)
- Filament winding
- Pultrusion

...

- Wet pressing
- Press forming of thermoplastic composites

Testing pyramid or building block approach

Composites are orthotropic materials, where normal and shear properties are independent.

The material properties of UD composites in fiber and matrix direction vary significantly.

UD carbon-epoxy prepreg material system used for Aerospace composite structures

Basic elastic properties (in-plane)					Basic strengths (in-plane)								
		SI		Imperial				SI		Imperial			
longitudinal tensile modulus	E_1^t	165	GPa	23.9	msi	longitudinal tension	F_1^{tu}	2700	MPa	391.6	ksi	Tension	
transverse tensile modulus	E_2^t	12	GPa	1.7	msi	Transverse tension	F_2^{tu}	60	MPa	8.7	ksi		
Longitudinal compressive modulus	<i>E</i> ^{<i>c</i>} ₁	165	GPa	23.9	msi	Longitudinal compression	F_1^{cu}	1500	MPa	217.6	ksi	Compression	
Transverse compressive modulus	<i>E</i> ^{<i>c</i>} ₂	12	GPa	1.7	msi	Transverse compression	F_2^{cu}	250	MPa	36.3	ksi	Compression	
In-plane shear modulus	<i>G</i> ₁₂	5.5	GPa	0.8	msi	In-plane shear	<i>F</i> ₁₂	100	MPa	14.5	ksi	Shear	
Poisson's ratio	v_{12}	0.3	-	0.3	-								

Tensile testing

ZwickRoell offers different grips for tension testing of composites that satisfy different customer needs.

mechanical body-over-wedge grip

wedge screw grip

hydraulic body-over-wedge grip

 $\mathcal{E}_{\mathcal{V}}$ \mathcal{E}_{χ}

Zwick Roell

P, σ_{χ}

Some international standards to determine the tensile mechanical properties of advanced composite materials

ISO 527-4	EN 2561	DIN 65378	ASTM D 3039	Airbus AITM 1.0007
ISO 527-5	EN 2597	DIN 65469	prEN 6035	Boeing BSS 7320

Alignment

Misalignment has a strong effect on tests with brittle materials. We offer a complete portfolio for alignment of the load axis.

Different methods exist, distinguished by the type of loading.

End Loading

Shear Loading

Combined Loading

ISO 14126 method 2
ASTM D 695
Boeing BSS 7260 type III & IV

DIN EN 2850 type B

ISO 14126 method 1

ASTM D 3410

Airbus AITM 1.0008

DIN EN 2850 type A

ISO 14126 method 2
ASTM D 6641
Airbus AITM 1.0008

End loading compression tools are variants of the ASTM D 695 tool, initially developed for plastics testing.

End Loading

- ZwickRoell's end loading compression tool includes guides for both, Modulus (center) and Ultimate Strength (right) measurement.
- It is always well centered to the loading axis of the machine.

Untabled specimens, used for modulus measurement, break early at the specimens end.

The HCCF covers <u>shear loading</u> and <u>combined loading</u> standards, is easy to operate and supplies reliable test results.

Shear Loading

Features of the HCCF

- Hydraulic parallel clamping principle
- Shear loading up to about 40 kN
- Combined loading up to 200 kN
- Up to 35 mm wide specimen possible
- No movements of jaw faces during test
- Exact alignment of the jaw faces
- Initial misalignments due to tab or glue thickness differences are visible at the moment of clamping and can be corrected
- The HCCF must not be removed from the test machine, which increases specimen trough-put
- Adjustable specimen end-stops
- Free access, simple cleaning

HCCF – Hydraulic Composites Compression Fixture

Compression testing

Two opposing linear strain gauges are needed to verify the validity of the test. σ

 E_c^{chord}

F^{cu}

Α

 $\Delta \epsilon$

 $\Delta \sigma$

 $\mathcal{E}_{\mathcal{U}}$

 \mathcal{E}_1

 \mathcal{E}_2 B_{ν}

- compression chord modulus of elasticity
- ultimate compression strength **D**max
 - maximum measured force
 - cross-sectional area of specimen
 - difference between strain points of averaged axial strain measurement
 - difference between applied tensile stress between defined strain points strain at failure
 - axial compression strain at strain measuring position 1
 - axial compression strain at strain measuring position 2
 - percent bending criteria

Shear testing

The tension test with ±45° laminate is a simple in-plane shear test. Using V-notched specimens both, in-plane and out-of-plane shear properties can be obtained.

Flexural testing

High quality tools and transducers are available for 3- and 4-point flexural tests at ambient and non-ambient temperatures.

3-point flexure test

4-point flexure test middle: deflection measurement with displacement transducer T25 right: deflection measurement with videoXtens and plunger

ISO 14125 EN 2562 EN 2746 ASTM D 7264 ASTM D 790 ASTM D 4476 ASTM D 6272

The ZwickRoell ILSS fixture with easy-to-set support distance is ideal for testing laminates with variable thicknesses.

Static testing machines

ZwickiLine and ProLine machines offer good quality and standard functionality that meets many applications. AllroundLine machines were designed to meet the highest requirements.

ZwickiLine

ProLine

easy to operate single column load frames for loads up to 5 kN

for tests that do not require complex sensor equipment

AllroundLine – Table Top

- very light and flexural stiff
- for loads up to 150 kN
- optionally with two test areas
- support legs to position test area at optimal operator height

AllroundLine – Floor Standing

- four guide columns for most accurate alignment of test axis
- for loads from 100 kN to 1200 kN
- optionally with two test areas
- tension-torsion machines available

ZwickRoell has developed a modular system for ambient and nonambient testing, covering 21 methods and about 120 test standards

Zwick Roell

ZwickRoell offers a comprehensive range for strain and deflection measurement for composite testing.

When choosing a suitable measurement system you need to verify the necessity for biaxial strain measurement, deflection and the need for non-ambient temperature testing.

Strain or Deflection Measurement System	Aml	pient Tempera	ture	Non-Ambient Temperature			
	E _{axial}	E _{transverse}	deflection	E _{axial}	E _{transverse}	deflection	
strain gages (setup boxes or universal amplifier) *	Х	х	-	Х	Х	-	
axial clip-on extensometer 5025-1 **	Х	-	with plunger	Х	-	with plunger	
biaxial clip-on extensometer biax 2501-1 **	Х	х	-	Х	х	-	
makroXtens II automatic sensor-arm extensometer	Х	х	Х	Х	-	Х	
videoXtens biax 2-150 HP	Х	х	with plunger	Х	Х	with plunger	
displacement transducer T25	-	-	Х	_	-	Х	

- one-time use only
 - time consuming application
 - may be damaged before ultimate failure
 - often difficulties when bonding to thermoplastic composites
- ** extensometer must be detached before failure for specimens with highly energetic failure modes (e.g. tension in fiber direction)

zwickroell.com