MBTS - <u>Multi-physics Battery Test Systems</u> ACCURATE MODELS FOR YOUR OWN BATTERY

The problem

Batteries are influenced by many non-linear phenomena

3

State of the Art

Climatic chamber

https://www.avl.com/en-de/testing-solutions/e-mobility-testing/battery-testing/avl-battery-cell-ts

No pressure control Slow thermal conditioning Indirect batt. temperature control (air/liquid)

State of the Art

Climatic chamber - BATEMO

4

Source: BATEMO https://www.batemo.de/products/batemo-cell-library/lg-chem-e66a/

Our solution

An all-in-one battery testing technology

True Temperature Testing

LGe66 - Discharging curves

6

Which battery are you trying to manage?

Different conditions generate different cell behaviours

Pressure influence @5°C

LGe66 - Discharging curves

At low temperatures, for high C rates, the pressure has a detrimental effect

At low C rates, the effect is negligible

Pressure influence @25°C

LGe66 - Discharging curves

At high C rates, higher pressure induces a significant increase in the overall available energy.

At low currents the effect is the opposite

Pressure influence @45° C

LGe66 - Discharging curves

At high temperatures, the pressure effect always decreases the energy avaiable, with a higher effect at high C rates

Temperature influence @200 N (0.01 Mpa)

LGe66 - Discharging curves **0.5C**

Temperature influence @15000 N (0.5 Mpa)

LGe66 - Discharging curves **0.5C**

12

Temperature influence @30000 N (1 Mpa)

The optimal parameters for each case

0.5C - Ah	5°C	25°C	45°C	2C - Ah	
0 MPa	54	65	66	0 MPa	
0.5 MPa	54	62	57	0.5 MPa	
1 MPa	54	62	57	1 MPa	

2C - Ah	5°C	25°C	45°C
0 MPa	17.5	21	52
0.5 MPa	13	34	47
1 MPa	12.5	35	45

Nominal capacity is 65 Ah

Breathing-Swelling

Mechanical Accuracy:

The stiffness, breathing, swelling and thermal expansion analysis is at nanometric precision. The press can be controlled both with force and displacement

Hybrid Power Pulse Characterization Electrical profiles up to $80 \vee$ and $510 \wedge$

Electrochemical Impedance
 Spectroscopy analysis

 \geq

 \geq

 \geq

 Definition of equivalent circuit model based on measurements

Testing portfolio

Electrical

Charging/discharging curves up to 510 A

Thermal

- Cell surface temperature Charge/Discharge
- Controlled temperature with dynamic behavior
- Fixed/Dynamic spatial temperature gradient over the cell
- Heat flux map generation

Structural

- Mechanical characterisation of cell
- Stiffness measurement under thermal/electrical load
 - Swelling measurements under load
- Constant pressure relaxation
- Dynamic stiffness response

Ageing

A complete solution for all battery development needs

- Electrical cycling at specific c-rate
- Electrical cycling with pressure/temperature
- Electrical cycling with specific constraint displacement
- Measurement of electrical capacity during ageing

Swelling

- Swelling due to charging/discharging
 Swelling due to state of charge
 - Decoupling of swelling from ageing
- Measurement of electrical capacity degradation

Benefits of the technology

Increase of driving range and durability for the same car

MBTS Cell Model

Luigi Aiello

MSc Mechatronic Engineering

6 years Simulation Engineer at AVL 4 years Project Assistant at VSI - TU Graz 1 year Battery Specialist at Samsung SDI

Federico Coren

Dr. tech. Mechanical Engineering

I years Simulation Engineer Magna Steyr4 years Simulation Engineer FTG - TU Graz2 years researcher and founder Aalto

THANK YOU

Zwick Roell

Strategic Partner