Requirements for the Safe Operation of Hydrogen Test Systems

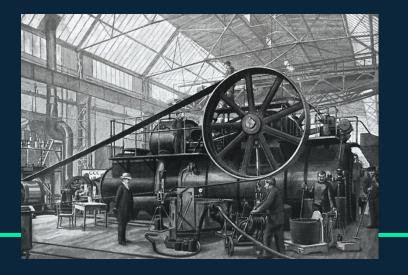
Determination of Reliability Requirements

Ulm, 18-10-2023

Mehr Wert. Mehr Vertrauen.

Introduction & Motivation Legal Requirements

02


Basic Principles Explosion Protection

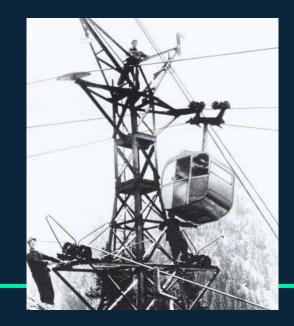
03

Reliability Requirements Example: Gas Warning System

04 Summary

Our legacy of sustainable business success

1866


Assuring trust in technology: The Steam Boiler Inspection Association was established in Germany

Safer roads:

Expansion to electrical engineering and machinery with the first vehicle periodic technical inspection

1900s

1960s

Exporting expertise: TÜV SÜD starts to provide quality assurance of goods across borders to facilitate global trade

Hydrogen Physical Properties

- Gas
 - Colourless
 - Odourless
- Flammable

Reacts with oxygen to H_2O

Use as Energy Carrier

• Non toxic

Property	Value
Lower Explosion Level	4,0 Vol% Comparison:
Upper Explosion Level	77 Vol% CH ₄ : 0,28 mJ
Ignition Temperature	560 °C C ₃ H ₈ : 0,24 mJ
Minimum Ignition Energy	0,017 mJ
Boiling Temperature	-253 °C

Safety Measures

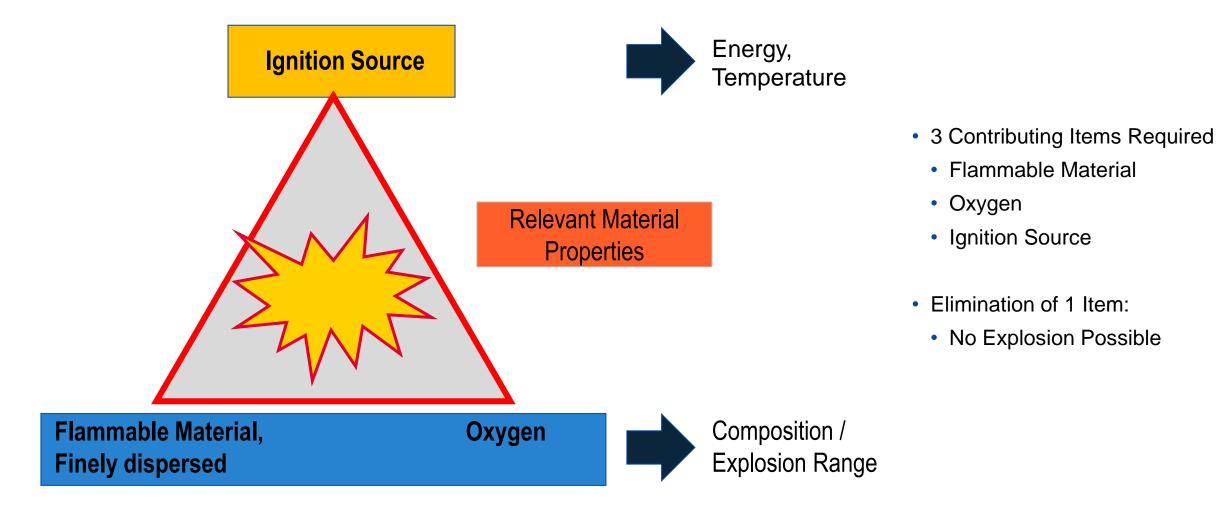
Flammable Gas Hazard Evaluation (Industrial Safety Regulations) Occurrence of Hazardous Explosive Atmosphere Possible Flammable Gas (Industrial Safety Regulations)

- Explosion Protection Concept
 - Documentation in Explosion Protection Document
 - Regular Inspection of Explosion Safety Required

Responsibility:

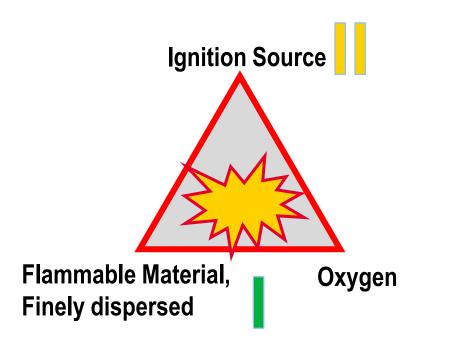
EMPLOYER

- Explosion Protection Concept
- Performance of Inspection
- Extent of Inspections
- Qualification of Inspectors


Basic Requirements for an Explosion Protection Concept

01	Introduction & Motivation Legal Requirements
02	Basic Principles Explosion Protection
03	Reliability Requirements Example: Gas Warning System
04	Summary

Explosion Protection

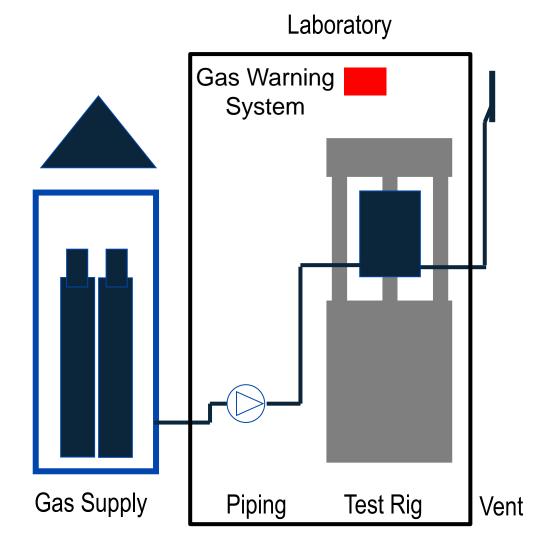

Explosion Protection Measures

- I Primary Protection
- || Secondary Protection
- III Tertiary Protection

Preventing the Generation of Hazardous Explosive Atmosphere Preventing the Ignition of Hazardous Explosive Atmosphere

Preventing the Impact of Igniting Hazardous Explosive Atmosphere

Frequency of Occurrence of Explosive Atmosphere


Longterm, Frequently	Zone 0
Sometimes	Zone 1
Shortterm and Rarely	Zone 2

No Simultaneous Occurrence of

- Explosive Atmosphere and
- Ignition Source allowed!

Basic Setup of Explosion Protection Concept

Primary Protection:

- Leak-tightness of all components (connections)
- Regular Maintenance /
 Inspection
 - -> small leakages will not become big leakages
- Ventilation / Flushing will dispense small amounts of flammable gases

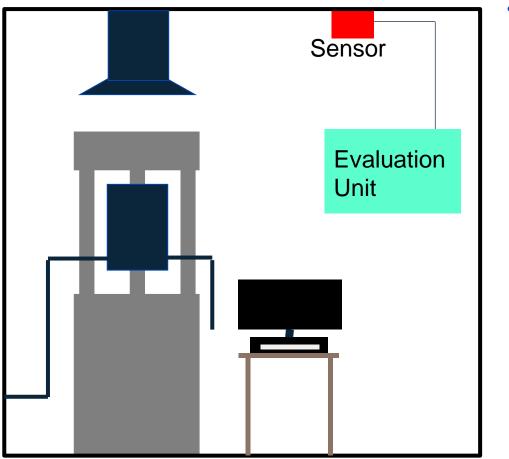
Secondary Protection:

 Wherever explosive atmosphere might occur: No Ignition Sources! Protection Concept supported by **Control Devices**, e.g.:

- Pressure Transducers
- Gas Warning Systems
- Level Sensors

Reliability Requirements

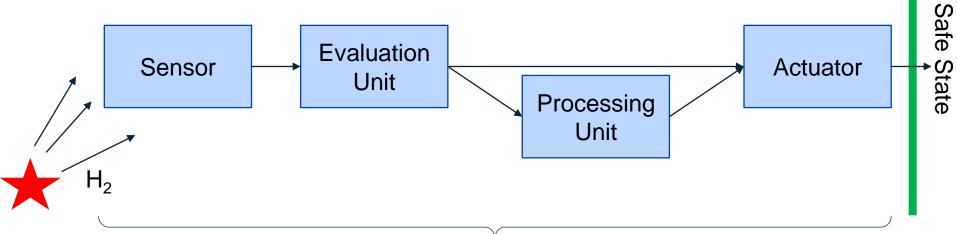
Introduction & Motivation Legal Requirements


02 Basic Principles of Explosion Protection

03 Reliability Requirements Example: Gas Warning System

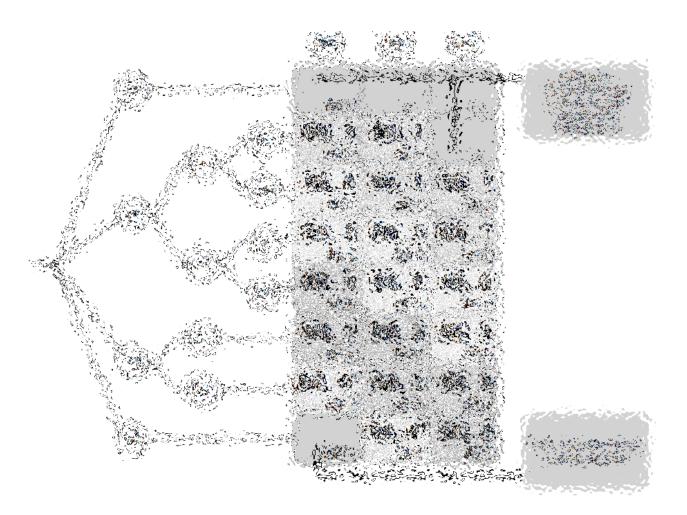
Safety Strategies for Hydrogen Testing

Reliability Requirements Example: Gas Warning System

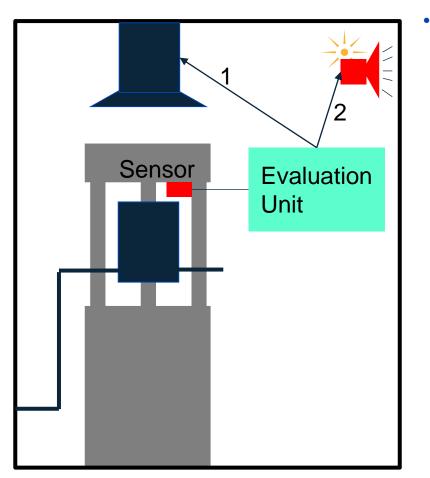

- Gas Warning System
 - Sensor
 - Evaluation Unit
 - Primary Questions:
 - Is the sensor capable of detecting the leaking gas
 - · Is the sensor located in a suitable place
 - Additional Question:
 - What is the damage scenario that needs to be considered (e.g. reaction time)
 - Similarly Important:
 - What is the Gas Warning System supposed to do?

Reliability Requirements Example: Gas Warning System

Complete chain of reaction needs to be considered


Reliability Requirements according to TRGS 725 (technical guideline for the handling of hazardous materials)

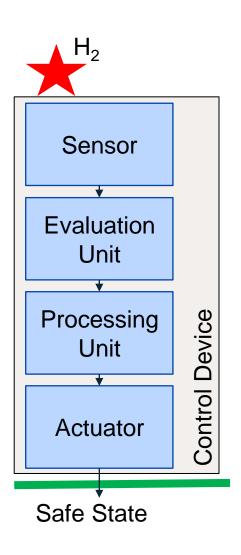
Alternative Path: Evaluation according to VDI/VDE 2180 Blatt 1


Reliability Requirements Risk Graph VDI/VDE 2180

- Risk Graph acc. to VDI/VDE 2180
- S: Extent of Damage
 - S1 Minor Injury
 - S2 Major Injury / Fatality of single Person
 - S3 Fatalities of several People
 - S4 Catastrophic, many Fatalities
- A: Duration of Stay
 - A1 Rarely
 - A2 Frequently
- G: Countermeasures
 - G1 Possible under certain circumstances
 - G2 Basically impossible
- W: Probabilty of Occurrence
 - W1 Very low
 - W2 low
 - W3 relatively high

Reliability Requirements 2 Scenarios of Required Raction by GWS

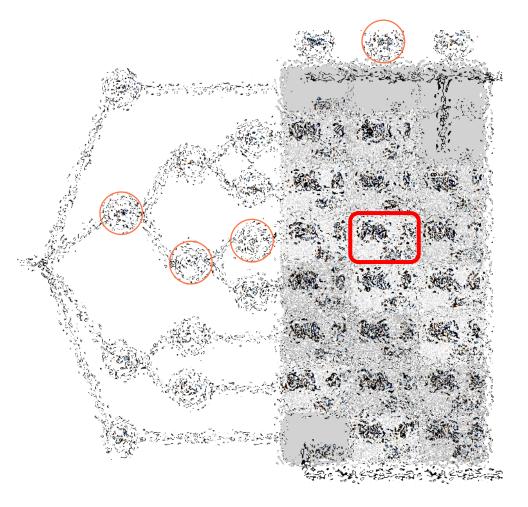
Basic Safety Strategy:


- Sensor is located in proper position
- System is designed, manufactured and installed according to state of the technique
- No major leak to be expected, only minor leakages

• Scenario 1:

- Ventilation is not running
- Intended Reaction of GWS: Activation of Ventilation

• Scenario 2:


- Ventilation is continuously running
- Intended Reaction of GWS: Alert of the Operator of existing gas leak

Reliability Requirements Scenario 1: Activation of Ventilation Required

- Evaluation according to Risk Graph
- S: Extent of Damage
 - S1 Minor Injury
 - S2 Major Injury / Fatality of Single Person
 - S3 Fatalities of several People
 - S4 Catastrophic, many Fatalities
- A: Duration of Stay
 - A1 Rarely
- A2 Frequently
- G: Countermeasures
 - G1 Possible under certain circumstances
 - G2 Basically impossible
- W: Probabilty of Occurrence
 - W1 Very low
 - W2 low
 - W3 relatively high

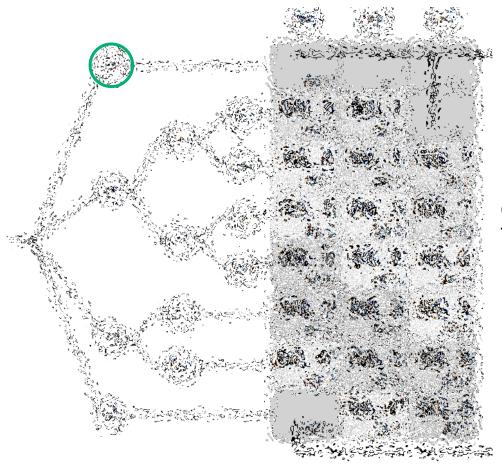
Present Scenario:

High Hardware Requirements (SIL 2)

-> Redundancy required

-> System must function even if a possible failure occurs (e.g. loss of electricity)

Reliability Requirements Scenario 2: Notification of Operator Required

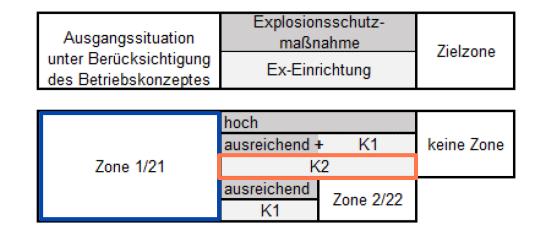


Evaluation according to Risk Graph

• S: Extent of Damage

S1 - Minor Injury

- S2 Major Injury / Fatality of single Person
- S3 Fatalities of several People
- S4 Catastrophic, many Fatalities
- A: Duration of Stay
 - A1 Rarely
 - A2 Frequently
- G: Countermeasures
 - G1 Possible under certain circumstances
 - G2 Basically impossible
- W: Probabilty of Occurrence
 - W1 Very low
 - W2 low
 - W3 relatively high


Present Scenario:

No Safety Integrity Level required

No redundancy of System Components or Failure Tolerance necessary.

Reliability Requirements TRGS 725

- Scenario 1:
 - Ventilation is not running
 - Intended Reaction of GWS: Activation of Ventilation

Comparison:

Different Approach

-> Same Result!

Scenario 1:

High Hardware Requirements (SIL 2), redundancy + failure tolerance required

Scenario 1:

No Safety Integrity Level required

• Scenario 2:

- Ventilation is continuously running
- Intended Reaction of GWS: Alerting the Operator of existing gas leak

Ausgangssituation	Explosionsschutz- maßnahme	Zielzone
unter Berücksichtigung des Betriebskonzeptes	Ex-Einrichtung	Zieizone

Zone 1/21	hoch		
	ausreichend +	⊦ K1	keine Zone
	K2		
	ausreichend	Zone 2/22	
	K1		
Source: TRGS	6 725		-

01	Introduction & Motivation Legal Requirements
02	Basic Principles Explosion Protection
03	Reliability Requirements Example: Gas Warning System
04	Summary

- Possible Existence of Hazardous Atmosphere Requires Explosion Protection Measures
- Ranking of Explosion Measures is
 - Preventing the Generation of Hazardous Explosive Atmosphere
 - Preventing the Ignition of Hazardous Explosive Atmosphere
 - Preventing the Impact of Igniting Hazardous Explosive Atmosphere
- Requirements regarding the Availability of Control Devices can be derived from the TRGS based on the probability approaches
- Requirements to the availability of Control Devices depend on the possible hazard in case of a failure

Thank You for your Attention

Contact:

Stefan Zickler Department Plant Safety

Email: Stefan.Zickler@tuvsud.com Telefon: +49 171 8150733

Folgen Sie uns auf:

in O 🕨

tuvsud.com info@tuvsud.com