Characterization methodology for thin materials in the field of e-mobility

Roman Norz^a, Simon Vitzthum^b, Florian Steinlehner^a and Wolfram Volk^a (a) Technical University Munich TUM School of Engineering and Design Chair of Metal Forming and Casting (b) ZwickRoell GmbH

Uliventure der TVM

Motivation and Introduction

- 40 % Reduction of CO₂ emissions in the mobility sector is required to reach the goals of the Climate Protection Plan 2050
- Mobility is the only big sector (energy, industry, buildings, mobility and agriculture) were almost no reduction of the CO₂ – emissions was reached between 1990 and 2019

Source: [UBA2023]

Motivation and Introduction

Material parameters are required for those materials!

Investigated Materials

• 4 different materials are investigated

Shear

Investigated Manufacturing Processes

[1]

[2]

Source: [1] utg, [2] TRUMPF Group, [3] Willi Weber, [4] ZwickRoell

[4]

Different Specimen Geometries

Experimental Setup

- ZwickRoell Z150 with LaserXtens
- Aramis SRX
- Strain rate AA1085:
 - 0.0004 1/s constant
- Strain rate other materials:
 - 0.00025 1/s in the elastic regime
 - 0.00292 1/s in the plastic regime

πп

FeSi24 – 350 µm

- Shear cutting was not possible due to the thickness of 350 µm
- In general, only small differences in between the different manufacturing processes

FeSi24 – 350 µm

Different process have only little influence on the obtained parameters

1.4404 – 75 µm

- Large differences in between the different manufacturing processes
- EDM leads to the "best" results

1.4404 – 75 μm

- Differences in the results come from edge cracks which are visible using DIC
- Material is very sensitive to edge cracks

 $1.4404 - 75 \,\mu m$

Different process have big influence on the obtained parameters

ZwickRoell – Mounting Helper

- Special clamping aid for thin materials by ZwickRoell
- Avoidance of wrinkles and slanted specimen mounting

1.4404 – 75 μm

- Differences between the mounting helper and the specimen mounting by hand is small
- Experiments were carried out by the utg and ZwickRoell

ТШ

1.4404 – 50 µm

- Large differences in between the different manufacturing processes
- Grinding is not suited for this material and thickness
- Laser cutting and cutting are quite similar
- EDM leads to the "best" results

1.4404 – 50 µm

Different process have big influence on the obtained parameters

$AA1085 - 15 \ \mu m$

- Material shows "Lüders"-bands
- Material behaviour is very inhomogeneous until fracture

$AA1085-15\ \mu m$

- Large differences in between the different manufacturing processes
- Grinding is not suited for this material and thickness
- Laser cutting and cutting are quite similar
- ZwickRoell used same specimens in combination with the mounting helper
- EDM was not possible

AA1085 – 15 µm

Different process have big influence on the obtained parameters

Mounting helper reduced scattering of the results

Conclusion

Suitability to manufacture the specimens:

Material	Grinding	Laser Cutting	EDM	Cutting
FeSi24 – 350 µm	++	++	++	n.p.
1.4404 – 75 µm		+	++	+
1.4404 – 50 µm		+	++	+
AA1085 – 15 µm		++	n.p.	++

Conclusion

• Other aspects:

Criteria	Grinding	Laser Cutting	EDM	Cutting
Process Time	+	+		++
Cost	+	-		++
Accuracy	-	+	++	++

Thank you.

Roman Norz, M.Sc. Research Associate

Technical University of Munich TUM School of Engineering and Design Chair of Metal Forming and Casting

Walther-Meissner-Str. 4 85748 Garching near Munich

roman.norz@tum.de www.mec.ed.tum.de/utg www.tum.de

ТΠ

Sources

[UBA2023]:Klimaschutz im Verkehr, URL:
https://www.umweltbundesamt.de/themen/verkehr/klimaschutz-im-verkehr#ziele

[WEISS17]: Weiss, H.; Leuning, N.; Steentjes, S.; Hameyer, K.; Andorfer, T.; Jenner, S. and W.Volk (2017): Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets, In: *Journal of Magnetism and Magnetic Materials,* doi: http://dx.doi.org/10.1016/j.jmmm.2016.08.002