

Testing Challenges for H2

Welspun World - Diversified Business Interests

HOME TEXTILES & RETAIL

FLOORINGS

LINE PIPES

SS Seamless PIPES & TUBES

INFRASTRUCTURE

OIL & GAS

ADVANCED TEXTILE

BUILDING MATERIAL

HEALTH & HYGIENE

WAREHOUSING & LOGISTICS

Products

LSAW Line Pipes

Pipe Coating

Concrete

HSAW Line Pipes

HFW Line Pipes


Induction Bends

Green Hydrogen

Welspun's Strategy - Green Steel & Green Pipe

Objective

Welspun is currently working with some of the Approved steel suppliers and existing International Clients :

- a. Qualification Program for Hydrogen Pipeline (Pure H2 & Blended H2 with NG)
- b. Green Steel development

We would like to have similar joint developmental qualification program for Hydrogen Pipeline with potential Customers.

Important Codes/ Standards

- International:
 - ASME B31.12: 2019
 - Design standard for pipelines, two design approaches
 - EIGA DOC 121/14
 - Design recommendations for pipelines
 - EN standard (Europe)
 - Currently revising the existing standards EN1594 to include H2 transportation
 - AS standard (Australia)
 - Currently revising the existing standard AS 2885 to include H2 transportation
- Upcoming Guidelines / Recommended Practices
 - DNV Guideline on Design, Construction and Operation of Hydrogen pipelines is expected by 2024/2025

Classification of Hydrogen

Green	Blue	Grey	Brown	Black
 Hydrogen by electrolysis of water using renewable energy No CO2 Emitted 	 Split Natural gas in to Hydrogen and CO2 CO2 Store or reused 	 Split Natural gas in to Hydrogen and CO2 C02 emitted in to atmosphere 	Made from brown coal	Made from black coal

Other types of H2: White (naturally occurring); Turquoise (solid carbon as a by-product); Pink (from nuclear energy); Yellow (using a mix of whatever is available) – TOTAL 9 TYPES

- Tensile test using round specimens as per ASTM G142/ ASTM G129 at low strain rate (may be 10-6 s-1)
- <u>Challenges</u>:
- The amount of time specimens are required to be exposed to H2 environment prior to testing is not defined
- Acceptance criteria for different API grades particularly X60M PSL2 and above in terms of YS, UTS etc. needs to be specified
- Testing using round bar specimens during production is time consuming. Conventionally flattened type specimens are being used.

Fracture toughness in hydrogen environment KIH

- KIH testing to be carried out as per Option B of ASME B31:12, ASME BPVC Sec. VIII, Division 3, article KD- 10
 & ASTM E1681.
- Testing to be carried out on 3 heats. From each heat, 3 specimens each from BM, WM & HAZ
- Test duration 1000 hours
- Test pressure 103 bar for grades X60, X65
- <u>Challenges</u>:
- The test is specified for material qualification and not specifying requirements with respect to regular production
- Test duration is very high and regular production cannot be started from before completion of the above tests, if to be carried out during MPQT
- Limitation of pressures for higher grades
- Require a single standard for carrying out the tests, as it is referring to multiple standards for line pipes

Fracture toughness in hydrogen environment

- As per ASTM E 1820 "Standard Test Method for Measurement of Fracture Toughness";
- − K-rate: 0.005 MPa·√m/s;
- Total 3 (three) specimens;
- C(T) specimens or SEN(T)

Challenges:

- ASTM E1820 is not applicable for H2
- If test is to be carried out in H2 environment, whether specimens are required to be exposed in H2 environment prior to testing, during testing is not clear
- Test duration etc. is not clear.

Fatigue Crack Growth Rate Tests

- Testing : As per ASTM E647
- Specimen type: C(T)
- Test frequency: <=0.1 Hz</p>
- Load ratio R = 0.5
- No. of specimens : 3
- Deliverables: Paris curve & fracture surface analysis
- <u>Challenges</u>:
- ASTM E647 is not for testing in H2 environment. Specific standard for testing in H2 environment is required.
- Effect of loading rate and loading time for constant loading scenarios is critical and needs to be defined.

Thank You!