Efficiency increases in tensile testing on metals according to ISO 6892-1 and ASTM E8

testXpo 2023

Oct. 16-19 2023 Ulm / Dr. E. Reimann Efficiency increases in tensile testing according to ISO 6892-1 and ASTM E8

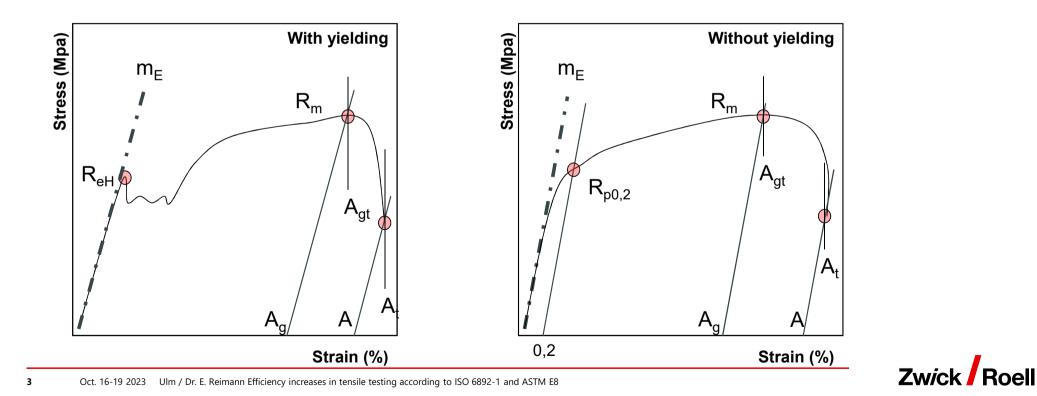
1

1. • Stress-strain curve and standards

Characteristic values from the stress-strain diagram

2. Test Methods/Test Speeds to DIN EN ISO 6892-1

Test speed dependency of materials properties Method B: stress-rate control Method A: strain-rate control


3. Summary

Typical test results according to DIN EN ISO 6892-1 method A1 Summary of efficiency increases

Mechanical properties from stress strain curve

Typical mechanical properties are stress values R_{eH} , $R_{p0.2}$, R_m . Typical strain values are A_g , A and A_{gt} and A_t . An important characteristic is the slope m_E in the beginning.

Active	Abbreviation	Unit	Name	testXpert III
	R _{p0.2} /R _m	%	Proof stress ratio	
	R _{eH}	MPa	Upper yield point	
	R _{eH} /R _m	%	Yield point ratio	Results in
	R _{eL}	MPa	Lower yield point	
	Ae	%	Yield point strain	testXpert
	R _m	MPa	Tensile strength	•
	Fm	kN	Maximum tensile force	
	Agt (corr.)	%	Total strain at maximum tensile force (corr.)	
	A{lo gt filtered	%	Total strain (corr.) at maximum tensile force (filtered)	
	Ag	%	Uniform elongation	
	Ag filtered	%	Uniform elongation (Filtered)	
	R _B	MPa	Stress at break	
	A _{t (corr.)}	%	Total strain at break (corr.)	
	A _{5.65}	%	Strain at break Ax1	
	A _{11.3}	%	Strain at break Ax2	
	A _{80mm}	%	Strain at break	
	Le	mm	Device gage length	
	Lo	mm	Initial gage length	
	Lc	mm	Gage length, crosshead	
	a ₀	mm	Specimen thickness	
	bo	mm	Specimen width	
	d o /dt _{Set}	MPa/s	Preset stress increase	
	do/dt _{Actual}	MPa/s	Maximum force increase rate	
	VActual crossh.	mm	Driven crosshead speed	
	Vset crossh.	mm	Necessary crosshead speed	
	k _{Test} assembly	kN/	Required preset for the stiffness of the test assembly	Zwick Roell
	So	mm²	Initial cross-section	Zw/ck / Roell

Test Method to DIN EN ISO 6892-1

ISO 6892-1 describes 3 test methods (2 for strain-rate and 1 for stress-rate control). Background is the possible material property's dependency (e.g. R_{p0.2}) on test speed.

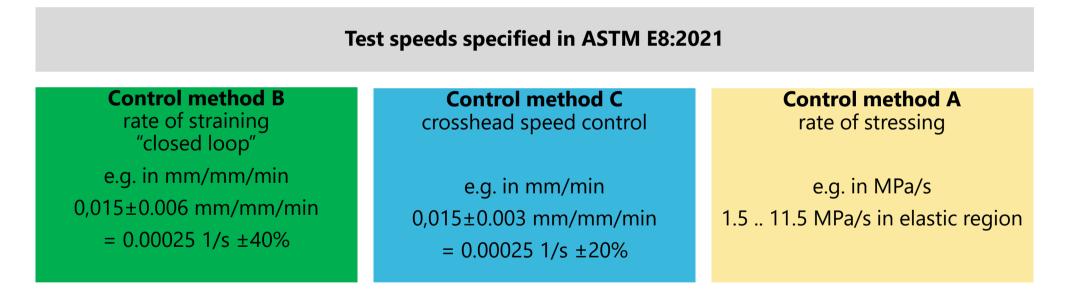
Test speeds specified in DIN EN ISO 6892-1

Method A Strain-rate control

Method B Setting a stress speed

Method A1 Closed loop Method A2 Open loop

NOTE 1 The difference between Method A and Method B is that the necessary testing speed of Method A is defined at the point of interest (e.g. Rp0,2), where the property has to be determined, whereas, in Method B, the necessary testing speed is set in the elastic range before the property (e.g. Rp0,2) has to be determined.


... using Method B (on some steels with a stress rate of ~30 MPa/s in the elastic region, using a system and grips with high stiffnesses and flat specimen with 20 mm width) a strain rate near the range 2 (=0.00025 1/s) of Method A may be observed

Stress rate	
R	
MPa	a s ⁻¹
min.	max.
2	20
6	60
	I MPa

magnesium, aluminium alloys, brass, titanium wrought iron, steel, tungsten, nickelbased alloys

Test Method to ASTM E8: 2021

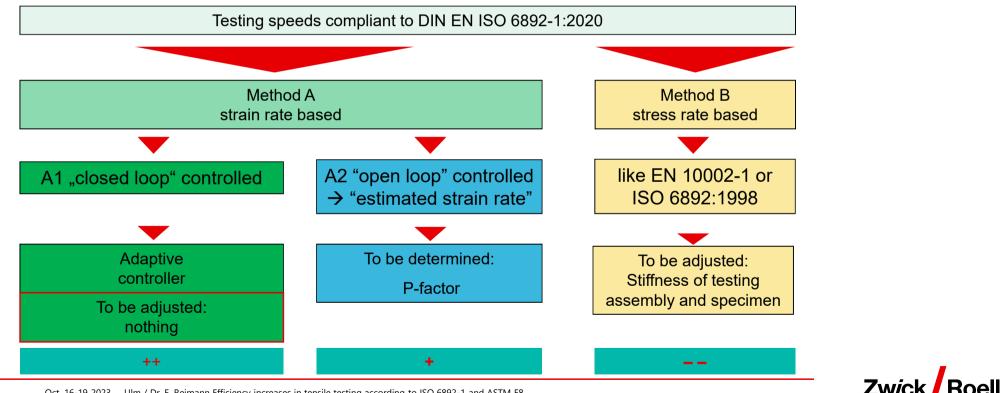
ASTM E8 describes 3 test methods (2 for strain-rate and 1 for stress rate control). Background is the possible material proterty's dependency (e.g. R_{p0.2}) on test speed.

Oct. 16-19 2023 Ulm / Dr. E. Reimann Efficiency increases in tensile testing according to ISO 6892-1 and ASTM E8

6

Comparison of test methods according to ISO and ASTM

The test methods according to ISO and ASTM have different abbreviations (letters) and different meanings (contents).


ISO 6892-1	Method description	ASTM E 8	Method description
Method A1	Strain-rate control closed loop	Method B	Rate of straining "closed loop"
Method A2	Strain-rate control open loop	Method C	Crosshead speed control
Method B	Stress-rate control	Method A	Rate of stressing

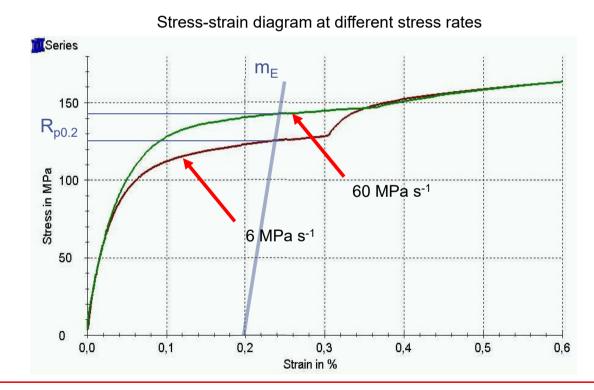
Standard ISO 6892-1

8

ISO 6892-1:2020 enables three types of controlling testing speeds: the method A, based on feedback of extensometer signal "closed loop", is recommended.

Test Method to DIN EN ISO 6892-1

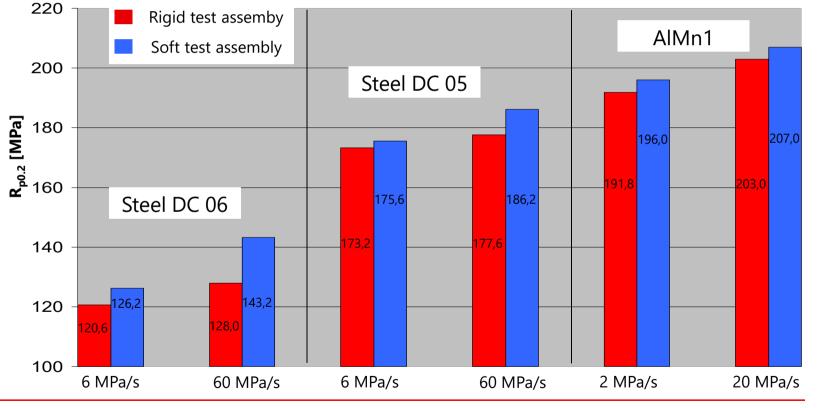
The difference between the methods is in how the set test speed is achieved in the elastic range


> The materials properties $R_{p0,2}$ or R_{eH} can be influenced by the test speed

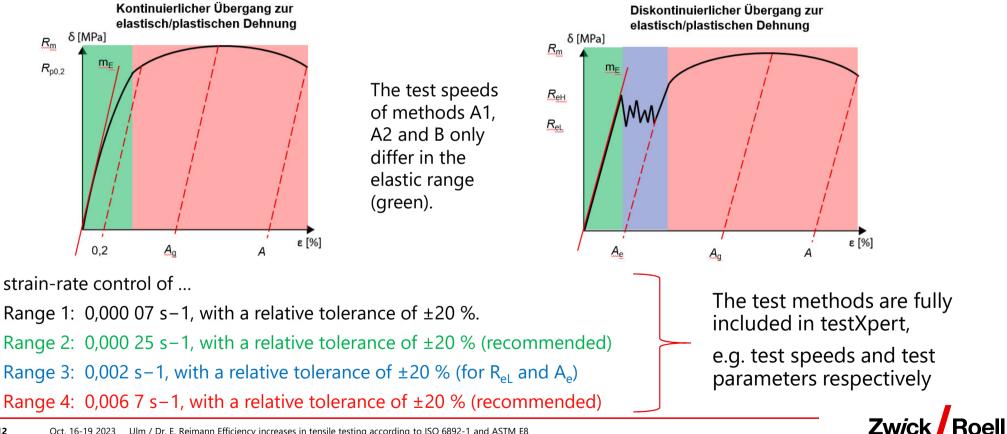
- Method B:
 - Set/calculate a constant crosshead speed to achieve the specified stress speed, e.g. 6/60 or 2/20 MPa/s; achieved significantly before measurement value determination
- Method A2 (open loop):
 - Setting a constant crosshead speed to achieve the specified strain rate, e.g. of 0.00025 1/s, at measurement value determination
- Method A1 (closed loop):
 - Setting of a "controlled" crosshead speed to achieve a constant strain rate in the entire elastic range, e.g. 0.00025 1/s, when determining the measured value

Test speed dependency of materials properties

Metal materials show different behavior under different testing speeds. For some metals the Rp0.2 value is depending on the testing speed quite strongly.



Reason: Metallic materials behavior is depending on testing rates, i.e. strain rates.


Test speed dependency of materials properties

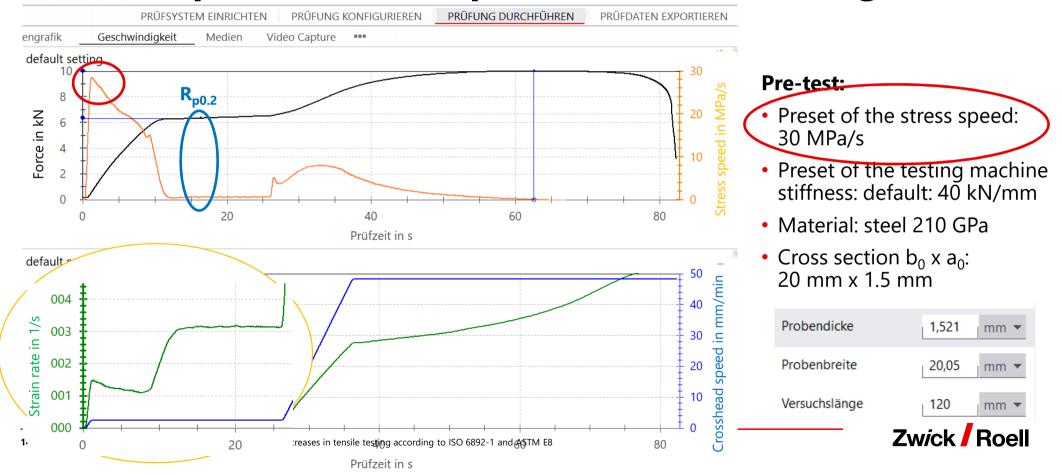
The proof stress value Rp0.2 can be influenced by the test speed and the rigidity of the test setup/assembly.

Test Method to DIN EN ISO 6892-1

Depending to the existing stress-strain curve, a distinction is made between two or three speed ranges

testXpert test program to ISO 6892-1: Method B (with yield strain)

Method B of ISO 6892-1 incl. test speed and all test parameters are fully configured in the testXpert software.


SET UP TES	STING SYSTEM CONF	IGURE TEST	RUN TE	ST EXPORT TES	T DATA		
Test speeds		Method B			•		
Stiffness or the test arrangement			40	kN/mm	-		•
Expected specimen stiffness			210,00	GPa	-	-	
Automatic check of the stiffness of the to	est assembly	One time p	er series		•		• -
Tolerance at checking the stiffness of the	e test assembly		3	07	•		
✓ Test phase Young's modulus determi	nation						
Speed, Young's modulus	Position controlled	~	30	MPa/s	Ŧ		
Young's modulus per hysteresis loop		Simple					
✓ Test phase Yield point		With yiel	ld strain				
Speed, yield point	Position controlled	•	30	MPa/s	•		
Speed in the yield range	Position controlled	-	0,00025	1/s	•		
Test speed	Position controlled	•	0,0067	1/s	•		
Percentage reduction in force for spo	eed switching		5	%Fmax	~		

- A pre-test is required to check the stiffness of the test assemby
- Then stiffness of test arragmenet and specimen stiffness are re-calculated

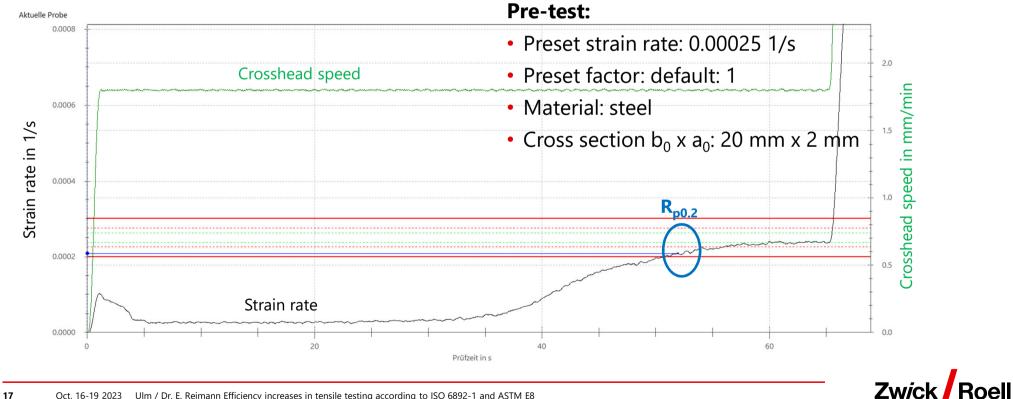
Test Method to DIN EN ISO 6892-1 Method B (Pre-test!)

Method B - Set/calculate a constant crosshead speed to obtain a specified stress speed in the elastic range

Method B - Set/calculate a constant crosshead speed to obtain a specified stress speed in the elastic range

testXpert test program to ISO 6892-1: Method A2 (with yield strain)

Method A2 of ISO 6892-1 incl. test speed and all test parameters are fully configured in the testXpert software.


	SET UP TESTING	SYSTEM CONFIG	URE TEST PU	IN TEST	XPORT TEST DATA	
	Test speeds		Method A(2)		•	
(Factor for adapting the estimated strain spee	ed.	1,00	00		
	Automatic check of the factor		One time per seri	ies	*	
	Tolerance correction factor		3		% 🗸	
	Test phase Young's modulus determination Speed, Young's modulus	Position controlled	√ 0,00	0025	1/s 👻	
	Young's modulus per hysteresis loop					
	✓ Test phase Yield point		Simple With yield stra	ain		
	Speed, yield point	Position controlled	▼ 0,00	0025	1/s 👻	
	Speed in the yield range	Position controlled	▼ 0,00	0025	1/s 🔻	
_	Test speed	Position controlled	▼ 0,00	067	1/s 👻	
	Percentage reduction in force for speed s	switching	5		%Fmax 👻	
	Delay at speed switching		0,1]	

- A pre-test is required to check the factor for adopting of the estimated strain speed
- Then factor for adopting of the estimated strain speed re-calculated

Test Method to DIN EN ISO 6892-1 Method A2 (pre-test)

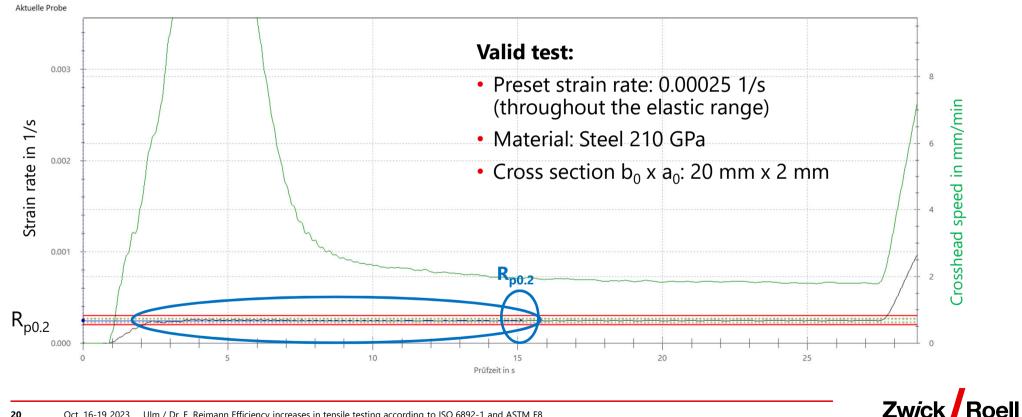
Method A2 - Set a constant crosshead speed to achieve specified strain rate (when taking measurements)

Test Method to DIN EN ISO 6892-1 Method A2 (valid test)

Method A2 - Set a constant crosshead speed to achieve specified strain rate (when taking measurements)

Valid Test:

testXpert test program to ISO 6892-1: Method A1 (with yield strain)


Method A1 to ISO 6892-1 incl. test speed and all test parameters are fully configured in the testXpert software.

SET UP TESTING S	SYSTEM CONFIGU	RE TEST	RUN TEST	EXPORT TEST DATA	
Test speeds		Method A(1))		•
✓ Test phase Young's modulus determination					
Speed, Young's modulus	Strain controlled	-	0,00025	1/s	-
Young's modulus per hysteresis loop					_
✓ Test phase Yield point		Simple With yield	d strain		
Speed, yield point	Strain controlled	•	0,00025	1/s	•
Speed in the yield range	Position controlled	•	0,00025	1/s	•
Test speed	Position controlled	•	0,0067	1/s	•
Percentage reduction in force for speed swi	tching	l	5	%Fmax	~
Delay at speed switching		l	0,1		

Test method A1 to DIN EN ISO 6892-1

Method A1 - Setting of a "controlled" crosshead speed to achieve a constant strain rate throughout the elastic range

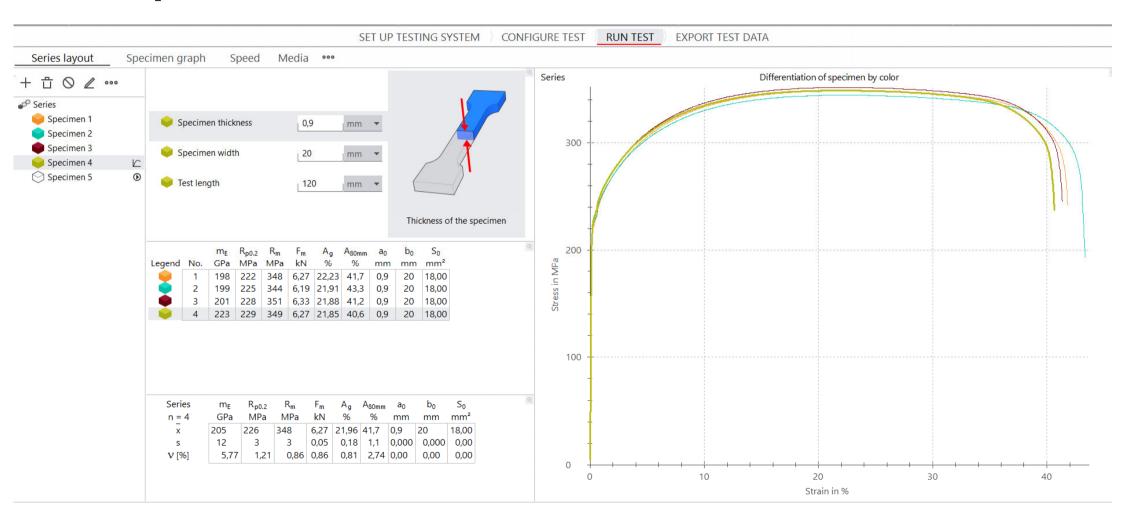
1. • Stress-strain curve and standards

Characteristic values from the stress-strain diagram

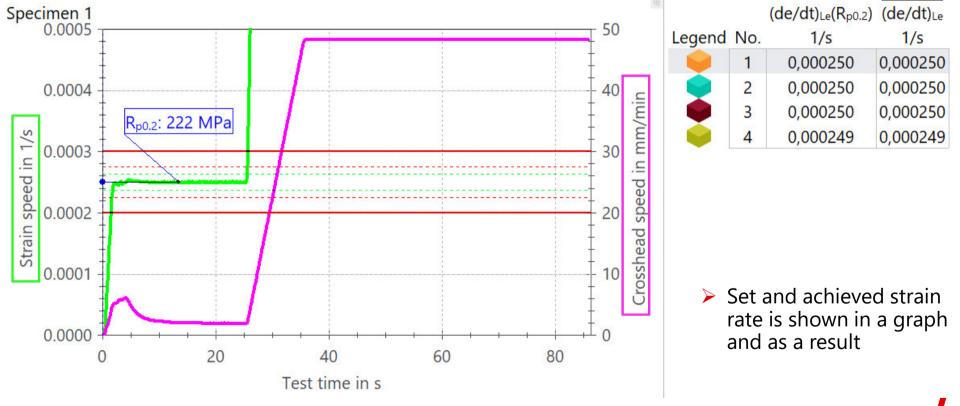
2. Test Methods/Test Speeds to DIN EN ISO 6892-1

Test speed dependency of materials properties Method B: stress-rate control Method A: strain-rate control

3.


Summary

Typical test results according to DIN EN ISO 6892-1 method A1 Summary of efficiency increases


Typical test results to DIN EN ISO 6892-1 Method A1

Example of test results on sheet metals - Method A1

Typical test results to DIN EN ISO 6892-1 Method A1 – strain speed control

TestXpert automatically proves the correct strain rate control according the standard's requirement.

Summary: Efficiency increases

The efficiency gains are largely due to testXpert's assistance and choice of testing procedure.

- When changing the specimen, preliminary tests are necessary for test methods B and A2.
- For method B, information on the stiffnesses of the test setup and of the specimen are necessary.
- For method A2, the P-factor must be specified to ensure the exact test speed in the interested points.
- For procedure A1, no preliminary tests or complex test parameterisation are necessary if the test system is already equipped with adaptive control.
- The assistance of testXpert supports in the appropriate parameterization of the test. This also reduces potential input
 errors by the operator. The test results are automatically prepared and can be easily transferred, processed and exported
 by activating them.
- The test speeds according to standard specifications are directly available in testXpert as a diagram or as a result, which in addition to qualification also makes auditing of the test system easy. This also applies analogously to the crosshead speed.
- Specimen gauges are integrated in testXpert, saving you time and reducing input errors.
- Automatic import of specimen and organisation data from your ERP or host system.
- Automatic export of results and data to your ERP system via standardised ODBC interface or Excel.

zwickroell.com