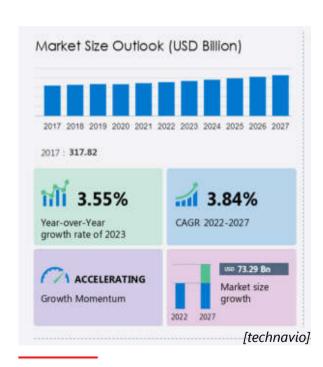


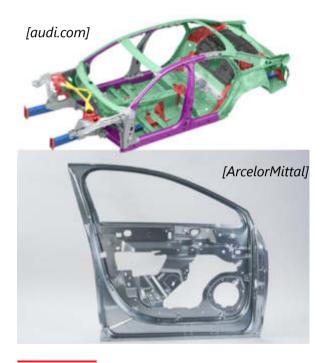
Versagensanalyse in der Blechumformung - Einführung in die Grenzform- änderungskurve

testXpo Vorträge 2023



- 1. Aktuelle Herausforderungen in der Blechumformung
- 2. Einführung in die Grenzformänderungskurve
- 3. Prüfaufbau und Analyse der Grenzformänderungskurve
- 4. Blechumform-Prüfmaschinen BUP
- 5. Zusammenfassung und Ausblick

Aktuelle Herausforderungen bei der Blechumformung

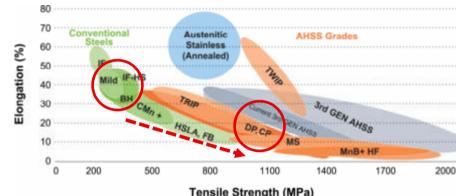

Die Forderung nach CO2-Reduktion und geringem Fahrzeuggewicht bedingt den konsequenten Leichtbau

Vorhersage des globalen Blechmarkts bis 2027

Der Leichtbau führt in der Blechumformung...

- zu komplexeren Bauteilgeometrien
- zur Multimaterialbauweise ("der richtige Werkstoff am richtigen Ort")
- zur Anpassung von Verfahren und Prozessen
- zu einem weiteren Wachstum des Blechmarktes weltweit
- zum Ersetzen von konventionellen Werkstoffen mit modernen Leichtbaumaterialien

Karosserie in Multimaterialbauweise und Vordertür


Aktuelle Herausforderungen bei der Blechumformung

Die Verwendung von Leichtbauwerkstoffen geht oft mit einer reduzierten Umformbarkeit einher

- Verwendung von höher- und höchstfesten Blechwerkstoffen um Material und damit auch Gewicht einzusparen
- Verwendung von weiteren Leichtbauwerkstoffen (bspw. Aluminium, Magnesium)
- Erheblicher Anstieg der Produktion in h\u00f6her und h\u00f6chstfesten Werkstoffe weltweit
- Anwendungen vor allem im Automobilbau, Maschinen- und Anlagenbau aber auch bei Verpackungen

Aber:

- Diese Werkstoffe sind meist schwieriger umzuformen
- Ein Versagen im Umformprozess ist dadurch wahrscheinlicher

[polarismarketresearch.com]

[ahssinsights.org]

Versagensanalyse in der Blechumformung

Die Versagensanalyse und -vorhersage nimmt in der Blechumformung einen wesentlichen Bestandteil ein

- Etwa 1/3 der Werkzeuggesamtkosten beim Tiefziehen entfallen auf Korrekturen während der Einarbeitung
- Simulative Auslegung von Tiefziehprozessen mithilfe der FEM gewinnt daher immer mehr an Bedeutung
- Ziel sind einwandfreie Bauteile und das Verhindern von Versagen durch Falten und / oder Reißer
- Dafür sind diverse Materialkennwerte notwendig
- Versagensanalyse von Blechwerkstoffen:

Grenzformänderungskurve (FLC – Forming Limit Curve)

- 1. Aktuelle Herausforderungen in der Blechumformung
- 2. Einführung in die Grenzformänderungskurve
- 3. Prüfaufbau und Analyse der Grenzformänderungskurve
- 4. Blechumform-Prüfmaschinen BUP
- 5. Zusammenfassung und Ausblick

Einführung in die Grenzformänderungskurve

Die Grenzformänderungskurve (FLC) bildet das Versagensverhalten eines Blechwerkstoffs ab

Generelles Vorgehen:

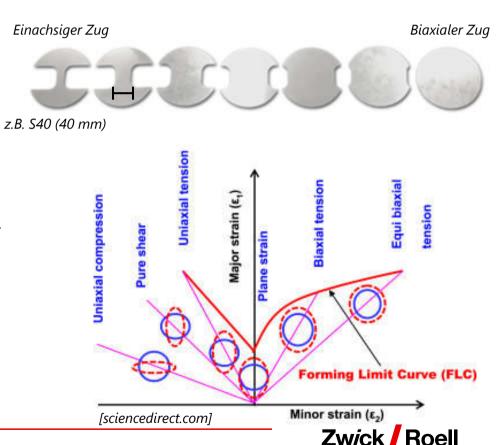
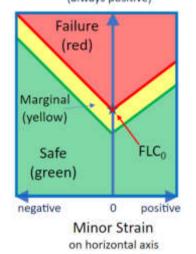

- 1. Kritische Formänderungen werden erzeugt
- Verschiedene Dehnungszustände durch variable Stegbreiten (z.B. S40)
- 3. Vergleich und Bewertung der Ergebnisse mit am Bauteil / Simulation vorliegenden Formänderungen

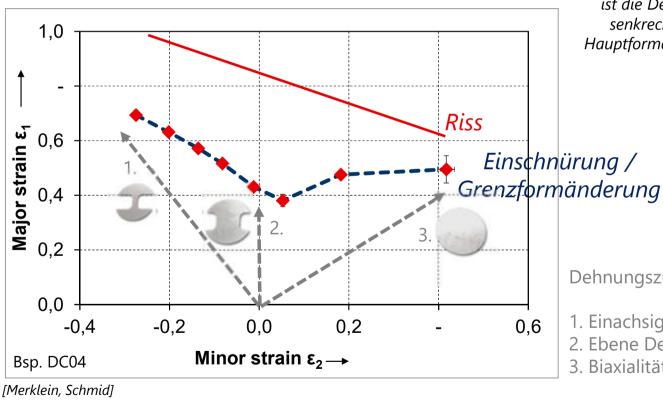
Abbildung der Grenzformänderungskurve (FLC) anhand der Haupt-(major strain) und Nebenformänderungen (minor strain) im

Grenzformänderungsdiagramm

Anwendung der Grenzformänderungskurve:

- Materialeingangsprüfung oder Qualitätssicherung
- Vergleich von Werkstoffen (Eignung?)
- Simulation (FEM) und Analyse des Versagensverhaltens




Einführung in die Grenzformänderungskurve

Die Grenzformänderungskurve (FLC) beschreibt die Umformbarkeit von Metallwerkstoffen bis zum Versagen durch Einschnürung ("necking")

Die Hauptformänderung ist definiert als die Dehnung in Richtung der maximalen Dehnung.

> Major Strain on vertical axis (always positive)

Die Nebenformänderung ist die Dehnung senkrecht zur Hauptformänderung

Dehnungszustände:

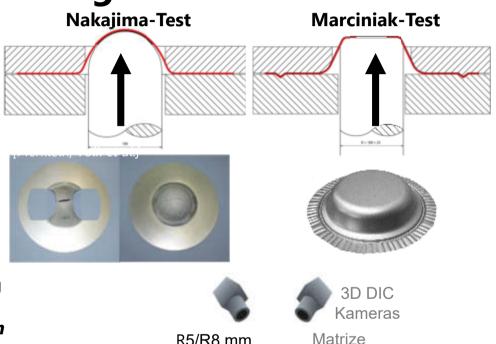
- 1. Einachsiger Zug
- 2. Ebene Dehnung
- 3. Biaxialität

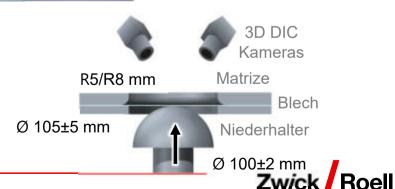
[ahssinsights.org]

Zwick Roell

Einführung in die Grenzformänderungskurve

Die Grenzformänderungskurve findet in der a) simulativen Auslegung oder b) Beurteilung am finalen Bauteil Anwendung

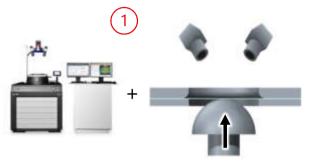

- 1. Aktuelle Herausforderungen in der Blechumformung
- 2. Einführung in die Grenzformänderungskurve
- 3. Prüfaufbau und Analyse der Grenzformänderungskurve
- 4. Blechumform-Prüfmaschinen BUP
- 5. Zusammenfassung und Ausblick

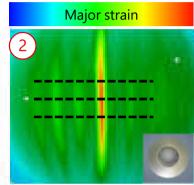


Prüfaufbau und Analyse der Grenzformänderungskurve

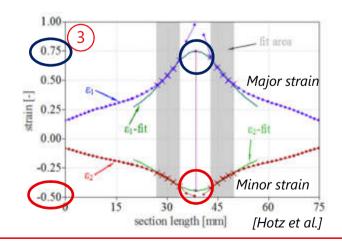
Die Erstellung einer Grenzformänderungskurve für Metallwerkstoffe ist durch die ISO genormt.

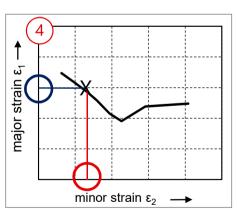
- · Verwendung von Nakajima- oder Marciniak-Geometrien
- Blechdicke von 0,3 bis 4,0 mm,
 - Empfehlung: Stahl bis maximal 2,5 mm
- Stempelgeschwindigkeit 0,5 2,0 mm/s
- n = 3 Proben pro Geometrie
- Frequenz Aufnahme min. 10 Bilder / mm
- Orientierung zur Walzrichtung nach Norm je nach Werkstoff
- DIN EN ISO 12004: Metallische Werkstoffe Bestimmung der Grenzformänderungskurve für Bleche und Bänder
 - Teil 2: Bestimmung von Grenzformänderungskurven im Labor
 - Teil 1: Messung und Anwendung von Grenzformänderungsdiagrammen in Presswerken
 - ASTM E2218-15: Standard Test Method for Determining Forming Limit Curves




Prüfaufbau und Analyse der Grenzformänderungskurve

Bei der Umformung werden die lokalen Dehnungen mithilfe der 3D DIC aufgezeichnet

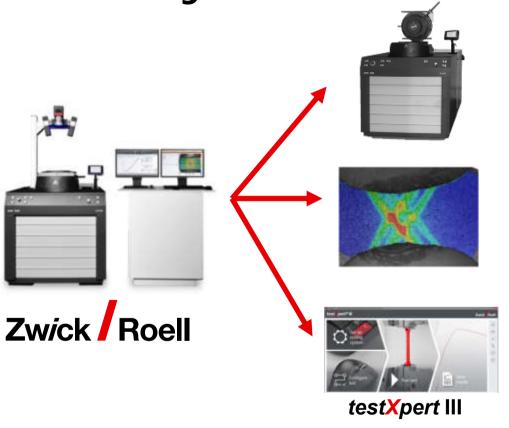

Prüfablauf nach ISO 12004-2:2021:


- Schmierung und Vorbereitung der Proben
- Klemmung der Probe mit Niederhalter
- 1 Probe wird mit Stempel ausgeformt
 - Kein Nachfließen des Werkstoffs
 - Aufnahme der lokalen Dehnungen bis zum Riss
- 2 Das letzte Bild vor Riss wird ausgewertet
 - Auswertung anhand der Schnittlinienmethode
 - Analyse der Dehnungen im Bild vor Riss
- 3 Rückberechnung auf Einschnürung nach Norm
- 4 Übertrag des $\varepsilon_1 \varepsilon_2$ Paares in das Diagramm

Schnittlinienmethode

Prüfaufbau und Analyse der Grenzformänderungskurve

Video zur Dehnungsanalyse für die Grenzformänderungskurve


[GOM Zeiss]

- 1. Aktuelle Herausforderungen in der Blechumformung
- 2. Einführung in die Grenzformänderungskurve
- 3. Prüfaufbau und Analyse der Grenzformänderungskurve
- 4. Blechumform-Prüfmaschinen BUP
- 5. Zusammenfassung und Ausblick

ZwickRoell bietet eine ganzheitliche Lösung zur Analyse und Bestimmung einer Grenzformänderungskurve.

1) Materialprüfmaschine

- Blechumform-Prüfmaschine BUP
- Umformung der Proben ohne Nachfließen

2) Dehnungsanalyse


- Optisches 3D DIC System
- · Analyse der Dehnungen und Berechnung der Ergebnisse

3) Software

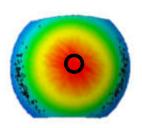
- testXpert III
- Digitale Schnittstelle für den optimalen Einsatz von ARAMIS, Prüfmaschine BUP und testXpert III

Die BUP – der Allrounder für die Blechumformprüfung

- Verschiedene Anwendungen
- Einzeln steuerbare und integrierten Funktionen wie Niederhalten, Stanzen, Ziehen und Auswerfen
- Flexibilität durch einfachen und schnellen Austausch von Werkzeugen

Die BUP besitzt ein ergonomisches Design gepaart durchdachter Technik.

- Tiefungskraft je nach Modell von 130 kN bis 1000 kN
- Geschwindigkeit je nach Modell 0,5-1200 mm/min (0,008-20 mm/s)
- Regelung der Tiefungsgeschwindigkeit und der Niederhalterkraft
- Bedienung über Display und / oder Software testXpert
- Einfacher und flexibler Austausch von Werkzeugen
- Die Auflösung des Messweges beträgt 0,001 mm
- Die Gehäusedeckel können schnell geöffnet werden.
- Sicherheit durch 2-Hand-Bedienung beim Schließen / Öffnen
- Schlüsselschalter zur Umschaltung Setup und Test Mode
- Die Prüfwerkzeuge einer BUP können einfach und schnell gewechselt werden.



ZwickRoell bietet als weitere Option eine Dehnratenregelung für die BUP Blechprüfmaschine.

- Die Dehnrate beeinflusst die Ergebnisse bei Materialprüfung bei dehnratenabhängigen Werkstoffen (bspw. Tiefziehstähle DC).
 - Während der Umformung dünnt der Werkstoff aus (auch bei der FLC).
 - Bei konstanter Ziehgeschwindigkeit steigt die Dehnrate stetig an.
 - Vorgabe in der Norm mit konstanter Geschwindigkeit
- Umsetzung bereits in anderen Versuchen genormt
 - Zugversuch nach DIN EN ISO 6892-1, Verfahren A1
 - Zugversuch nach ASTM E8, Methode B (closed loop)
- Dehnratenregelung mithilfe der digitalen Schnittstelle
 3D DIC ARAMIS und Prüfmaschine BUP
- → Regelung der Dehnrate bei dehnratensensitiven Werkstoffen

Auswertebereich Bsp.

Mit der BUP kann eine Vielzahl weiterer Anwendungen im Bereich der Blechumformung und -prüfung abgedeckt werden.

Prüfung	Norm / Richtlinie	BUP100/200	BUP400/600	BUP1000
Tiefungsversuch	DIN EN ISO 20482, ASTM E 643	×	×	×
Näpfchenzieh- versuch	SWIFT, EN 1669, ISO 11531	×	×	×
FLC	ISO 12004	Auf Anfrage	×	×
Bulge	DIN EN ISO 16808	×	X	×
LDH	n/a	×	X	×
Rückfederung	n/a	×	X	×
Engelhard Test	n/a	×	X	×
Fukui Test	JIS-Z-2249	×	X	×
Swift	n/a	×	X	×
Lochaufweit- versuch	KWI, ISO 16630	×	×	×
Tiefungsprüfung	DIN EN ISO 1520	×	×	×
U-Bead test	n/a	X	(×)	(×)
		X	X	×
Sonderverfahren	n/a	×	×	×

- 1. Aktuelle Herausforderungen in der Blechumformung
- 2. Einführung in die Grenzformänderungskurve
- 3. Prüfaufbau und Analyse der Grenzformänderungskurve
- 4. Blechumform-Prüfmaschinen BUP
- 5. Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

Mithilfe der Grenzformänderungskurve wird das Versagensverhalten von Blechwerkstoffen analysiert.

- Der Trend zu Leichtbauwerkstoffen hält an die Umformung wird dadurch in der Regel erschwert.
- Die Grenzformänderungskurve ist und bleibt das Mittel der Wahl zur Versagensanalyse bei Blechwerkstoffen.
- Der Prüfablauf und die Auswertung sind international genormt.
- Ein Abgleich mit Simulation oder Realbauteilen ist möglich.
- ZwickRoell bietet in Zusammenarbeit mit GOM ZEISS eine Lösung. Das 3D DIC System ARAMIS kann einfach integriert werden.
- Weitere Funktionalitäten sind verfügbar.

Die BUP kann mit implementiertem 3D DIC System auf der Metallinsel besichtigt werden.

BUP Familie - final und in Produktion

