跳轉至網頁上方

低溫測試

冷凍溫度下的材料測試

低溫測試(極低溫溫度低於120 K)在持續發展的氫技術領域中尤為重要。 目標:識別材料特性並深入了解材料在極低溫度下的使用情況。 在運輸和儲存液態氫時,工作溫度為20 K。

除了在低溫下拉伸、壓縮或剪切載荷下的純靜態特性外,疲勞行為或斷裂機械行為也很重要,因為氫與氧氣接觸即便是少量也會造成爆炸,材料的失效可能導致致命的後果。

對於包括拉伸測試、疲勞測試或衝擊測試在內的極低溫測試方法,ZwickRoell 提供了下列測試選項:

使用溫箱冷卻 使用浸入式低溫恆溫器冷卻 使用連續流動低溫恆溫器冷卻 極低溫下的衝擊測試 相關極低溫測試試驗機

低溫測試的目標

特別是對於液態氫的儲存,從材料測試角度來看,以下方面起著相當重要的作用:

  • 研究材料在極低溫範圍內的靜態、動態和斷裂力學行為,並測定相應材料結構設計和驗證所需的特徵值。 由於一定數量的氫在與氧氣接觸時會爆炸,且材料失效可能會導致致命後果,因此疲勞行為或斷裂機械行為尤其值得關注。
  • 對於 H2 基礎設施,與金屬不同的是複材通常不與氫介質直接接觸。 因此,在測試複材時,也可以使用處理起來簡單多的冷卻介質-氦氣來達到 20 K 的測試溫度。
  • 對於複合材料,纖維增強塑料中纖維和基體的熱膨脹係數差異很大,導致在製造過程中材料中產生凍結應力。 氫技術的應用中,更大的溫度變化會導致強烈的熱機械應力。 準確了解實際溫度下的這種行為非常重要,因為強烈的壓力和溫度波動(例如在加油期間)會導致複合材料出現微裂紋,從而對其機械性能和滲透性產生負面影響。

在極低溫範圍內進行測試可使用溫箱連續流動低溫恆溫器浸入式低溫恆溫器,取決於實際的操作溫度和應用。 根據此低溫設備的類型或版本,您可在 20 K 到 130 K 的低溫範圍內達到測試溫度。

由於氦氣的成本明顯高於氮氣成本,因此您必須權衡成本和收益,以確定該選擇哪個溫度範圍和何種冷卻介質。 實際溫度由不同的應用所決定。

低溫試驗方法標準

複材的低溫試驗標準

金屬低溫試驗標準

  • ISO 6892-3:低溫拉伸測試
  • ASTM E1450: 液態氦中結構合金拉伸測試的標準試驗方法

儲氫低溫測試

特別高效的儲氫有三種選擇,這導致了對不同類型容器或儲罐的要求,這對測試參數的選擇具有決定性作用。

  • 高達 4 bar 的液態下,在 20 K 溫度下的氫氣液化範圍內
  • 壓力範圍250 ...700 bar ,於常溫下
  • 壓力範圍500 ...1000 bar 介於 33 及 73 K

特別是液態氫,為大量運輸氫氣提供了一種替代方案。除了金屬外,複合材料還常用於液態氫的應用。與金屬相比,它們具有顯著優勢:那就是重量輕。這方面在航空航太或汽車應用中起著特別重要的作用,以開發非常輕便的氫氣罐。這使得液態氫在極低溫溫度下的應用在航空航天領域特別受到關注,例如,由於更有效的存儲密度。另一方面,在汽車領域,該行業也愈來愈依賴以容器來儲存高壓氣態氫。

因此,極低溫條件下測定液化設施或液氫罐上複材/金屬結構的設計和測定的特徵值測試,對於最大程度地滿足安全要求以及了解溫度引起的熱機械應力至關重要液態氫應用的變化。例如在加油過程中,由於複合材料中纖維和基體的熱膨脹係數不同,就會發生這種情況。

用溫度箱冷卻

溫度箱非常適合在高溫和低溫至約 -170℃的溫度下進行測試。 此處,低溫取決於溫度箱中的冷卻體積和延伸到溫度箱中的測試桿的體積。在帶溫度箱的機型中,桿從上方及下方延伸到溫箱內。

用氮浸低溫恆溫器進行冷卻

使用氮浸低溫恆溫器,材料試樣浸入氮浴槽中。 浸入式低溫恆溫器的測試溫度範圍降低到液態氮的溫度。 使用獨立的yoke架,將試樣連同夾具從上方導引至浸入式低溫恆溫器中。 一旦低溫測試完成,氮氣通常會被排空或蒸發到大氣中。

在連續流動低溫恆溫器中使用氮氣和氦氣冷卻

氮氣和氦氣連續流動低溫恆溫器在環境溫度到大約 20 K 的低溫範圍內運行,具體取決於冷卻介質。在這裡,將延伸到低溫恆溫器中的體積和主體保持在必要的最小值是至關重要的。經驗法則是:從連續流動低溫恆溫器中突出的(金屬)體積越小,可以達到的溫度就越低。

基於成本因素,連續流動低溫恆溫器使用氮氣進行預冷。一旦氮氣達到可能的最低溫度,即用Dewar vessel 杜瓦瓶中的氦氣冷卻,直至達到約 10 K 至 20 K (-253 °C) 的最終溫度。試樣周圍的環境介質始終是氦氣。為了節省成本,可以捕獲和回收氣體,然後將其壓縮或重新液化。

ZwickRoell 連續流動低溫恆溫器特殊版本也可以透過氫氣操作。在這種情況下,氫氣為試樣周圍的環境介質。如果在處理氫氣時採取了適當的安全預防措施,ZwickRoell 連續流動低溫恆溫器只需要進行一些技術修改。

使用液態氦操作的純浸入式低溫恆溫器不屬於 ZwickRoell 產品組合。

透過氦氣冷卻低溫擺錘衝擊試驗機

如果氫氣與氧氣接觸達到一定量就會爆炸。載氫組件的材料失效將產生致命的後果。因此,材料在除了機械性​​能以及疲勞和斷裂力學行為外的強度性能,在材料研究中也相當重要。

低溫擺錘衝擊試驗機用於測定極低溫條件下的強度性能。在特殊冷卻裝置的幫助下,Charpy 試樣被冷卻至 20 K 的溫度。然後根據DIN EN ISO 148-1對極低溫的金屬試樣進行傳統的 Charpy 衝擊測試。

儀器化擺錘衝擊試驗機測量衝擊過程中的力,提供應力和應變數據,並提供斷裂力學韌性參數的資訊。因此,儀器使我們確定故障模式,而不僅僅是故障能量。

應用於靜態和動態試驗機

ZwickRoell 為靜態試驗機動態試驗機提供三種低溫測試儀。適用以下原則:溫度愈低,機械作用就愈複雜

為了將冷卻劑的成本控制在可控範圍內,並使金屬feedthrough的溫度梯度盡可能低,我們建議確保要冷卻的質量(例如試樣夾具和 feedthrough)的材料體積盡可能小。 此外,最大測試負載應盡可能低。 這是因為與在環境溫度下進行測試相反,大量選擇尺寸不僅會導致高成本,還會影響可達到的最大低溫、溫度可控性,並最終影響測試結果的可靠性和可重複性。

在這種情況下,“只在必要時”的規則特別重要,必須從系統的項目規劃階段開始考慮。 ZwickRoell 產品組合中的低溫測試系統的最大負載為 100 kN。

在設計低溫測試系統時,必須特別考慮以下幾點:

  • 正確選擇試樣夾具材料。
  • 低溫區域的體積盡可能小,因此需要的冷卻液量盡可能少。
  • 將由插入冷卻槽的桿所引起的溫度損失保持在盡可能低的水平。
  • 使用特殊的加溫套以防止結冰。
  • 防止試驗機出現冷凝水。
  • 確保負載鏈的對位和對位能力。
  • 確保系統的校正能力。
  • 正確選擇延伸計
  • 使用密封件補償力的分流。
  • 補償熱膨脹。

您可能也對以下內容感興趣

氫對金屬的影響 / 氫脆
氣態氫儲存和運輸方面的測試要求與挑戰
通過氫高壓滅菌器(氫壓力罐)或中空試樣技術在壓縮氫環境中測定氫脆和測試解決方案的標準化方法
到 氫對金屬的影響 / 氫脆
測試氫燃料電池
到 測試氫燃料電池

有趣的用戶項目

常見問題

低溫學是用於產生超低溫的技術。120 K (-153 °C) 或更低的溫度被認為在冷凍溫度範圍內。

冷凍條件下的材料測試可提供極低溫度下的材料特性。該技術用於不同行業,以研究材料在實際運作溫度下的行為。冷凍溫度學用於複合材料、金屬、航空航太、汽車和儲能(氫)應用的材料測試。

低溫為 120 K (-153 °C) 或以下。這些溫度通常以Kelvin (K)表示。

冷凍低溫冷卻用於產生極低的溫度。最常見的是使用液態氣體來實現(如氮氣或氦氣)。

上方