ページコンテンツへ

複合材の試験

複合材 は2つ以上の材料が結合したものです。 材料を組み合わせることで、重量を最小限に抑えながら特定の方向の剛性や強度などの非常に特殊な材料特性が得られるため、新しい用途の開発が可能になります。

繊維複合材料は、さまざまな製品で新しい用途が見出されており、複合材料試験の重要性が高まっています。 エアバス A380およびA350、あるいはボーイング787などの航空機は、現在、民間航空分野で高い割合の炭素繊維複合材が使用されている例です。 BMW のI3およびI8自動車のシャシーは、すべて炭素繊維強化プラスチック (CFRP) 素材で作られているため、2人で運ぶことができるほど軽量です。 レースカーでは、繊維複合材はかなり前から標準的な素材でした。 大型の風力タービンのブレードにも、さまざまな種類の複合材が使用されています。 一方向繊維複合材は遠心力を吸収し、外面は多方向繊維複合材でできており、全体の構造はコア複合材として設計されています。 複合材料はプロテーゼなどの医療工学、橋の多面的な材料としての建築分野、そしてファサード工学においても使用されています。

航空宇宙分野において、液体水素の低温での保存は高い関心を集めています。材料試験の目的は、材料の特性を特定し、極低温での挙動について新たな洞察を得ることです。

複合材料の試験 複合材料のタイプ 複合材料の試験要求事項 モジュール式試験システム お客様の導入例 複合材料のパンフレット極低温での複合材料の試験

動画:複合材試験の概要

複合材試験の概要についてのウェビナー録画:
複合材の品質保証と設計に使用される基本的な試験方法と試験機器について詳しく学びましょう:

  • 複合材料試験アプリケーション (3:28)
  • 引張試験とアライメント (15:32)
  • 圧縮試験 (20:25)
  • せん断試験 (31:07)
  • 曲げ試験 (37:58)
  • ILSS / 積層間せん断強さ (42:21)
  • 静的試験機と試験ツール (45:26)
  • 伸びとたわみの測定(49:40)

PDFダウンロード

複合材に関する他のウェビナー

複合材の引張試験

 

複合引張試験機は、繊維強化プラスチックの引張弾性率とポアソン比の弾性特性値、および主材料方向の引張強さを測定するために使用されます。

  • 複合材料引張試験の最も一般的な試験方法は、ISO 527-4 および ISO 527-5ASTM D3039、さらに EN 2561 および EN 2597 です。
  • エアバス工場規格 AITM 1-0007 には、ノッチのない多方向積層板の引張試験と、オープンホール引張試験 (OHT) およびフィールドホール引張試験 (FHT) を使用して引張強度を決定するためのノッチ引張試験の両方の試験要件が含まれています。オープンホールおよびフィールドホール引張試験は、主に航空宇宙用途で、開孔または閉孔引張荷重下での多方向積層板の低減係数を決定するために実行されます。オープンホールおよびフィールドホール引張強度を決定するための他の標準化された試験方法には、ASTM D5766およびASTM D6742があります。
複合材の引張試験
ISO 527-4, ISO 527-5
行先 複合材の引張試験
複合材の引張試験
ASTM D3039
行先 複合材の引張試験

複合材圧縮試験とノッチ圧縮試験

 

複合材料の圧縮試験は、繊維強化プラスチックの主材料方向における圧縮弾性率と圧縮強度を決定するために使用されますラミネート繊維の方向の圧縮強度はしばしば引張強度よりも低いため、また、引張および圧縮荷重下でのFRPラミネートの破壊モードが非常に異なるため、圧縮試験は複合材料の試験において重要な役割を果たします。

複合材料の圧縮試験には、さまざまな試験方法と試験規格がありますが、大きく3種類の負荷タイプに区別されます:

  • ASTM D695、DIN EN 2850 type B またはボーイングBSS 7260 type III、IVに準拠した端部圧縮試験
  • ASTM D3410、ISO 14126 メソッド 1、 DIN EN 2850 type A、エアバス AITM 1-0008 試験片タイプ Aに準拠したせん断荷重による圧縮試験
  • ASTM D6641、ISO 14126 メソッド 2、 エアバス AITM 1.0008 試験片タイプ Aに準拠した複合荷重による圧縮試験

前述の通り、ノッチのない積層板の圧縮値を決定するための上記の試験方法に加えて、ASTM D6484に準拠したオープンホール圧縮強度(OHC)を決定するための複合材料の標準化されたノッチ付き圧縮試験試験もあります。
ノッチのない積層板の圧縮特性に加えて、複合材料の多方向積層体の圧縮荷重下での対応する削減係数を決定することができます。ノッチ付き圧縮試験については、産業規格であるエアバス AITM 1.0008の試験片タイプB、D、およびC、およびボーイングBSS 7260タイプIにさらに詳しく記載されています。

 

端部圧縮試験
ASTM D695, DIN EN 2850 Type BあるいはボーイングBSS 7260 Type III と IV
端部圧縮:連続長繊維強化複合材
行先 端部圧縮試験
せん断荷重による圧縮試験
ISO 14126 Method 1、ASTM D3410あるいはDIN EN 2850 Type A
せん断圧縮:繊維方向の強度が低い一方向複合材料、およびファブリックと多方向複合ラミネートの圧縮試験向け
行先 せん断荷重による圧縮試験
複合荷重による圧縮試験
ISO 14126 (メソッド 2)、ASTM D6641、エアバス AITM 1.0008
CLC 法(Combined Loading Compression):より大きな試験片断面積の複合材圧縮試験片の試験と、高強度の一方向炭素繊維複合材料(UD-CFRP)ラミネートの圧縮試験
行先 複合荷重による圧縮試験
オープンホール圧縮、フィルドホール圧縮、ノッチ圧縮試験
ASTM D6484、ASTM D6742、ボーイング BSS 7260 タイプ I、AITM1-0008
積層体の圧縮強度に関して穴の影響を決定
行先 オープンホール圧縮、フィルドホール圧縮、ノッチ圧縮試験

複合材のせん断試験

 

複合材料のせん断試験は、繊維強化プラスチックの面内せん断特性(せん断弾性率やせん断強度など)を決定するために使用されます。主材料方向で異なる特性値を持つFRP材料の場合、せん断弾性率は常に別々のせん断試験から決定され、他の弾性特性値から計算されることはできません。これは、等方性材料の場合とは異なります。

せん断特性とせん断挙動の決定のためには、3つの異なる試験方法が確立されています:

±45°ラミネートによる引張試験(面内せん断試験)では、引張試験と同じ試験アレンジが使用されることがあります。しかし、せん断ひずみの計算には軸方向のひずみに加えて横ひずみの記録が必須です。

IosipescuVノッチレールせん断試験には、ノッチ付き試験片とそれに対応した試験治具が必要です。ここでも二軸ひずみ測定が必要です。二軸ひずみゲージがよく使用されます。代替手段として、デジタル画像相関(DIC)を使用して歪みを測定することもできます。
また、適切な厚さの積層板がある場合、Vノッチせん断試験を使用して面外せん断値を決定することもできます。

 

面内せん断(IPS)
繊維方向に対して±45°で引張試験または圧縮試験を実施することによって行う事ができます。
行先 面内せん断(IPS)
V-ノッチせん断試験
面内せん断特性値を測定するために主に行われます。
行先 V-ノッチせん断試験

複合材の曲げ試験

積層体の曲げ試験は、比較的シンプルな試験アレンジ、試験体の形状と加工プロセス、および試験の性能により、素材の迅速な比較のための品質保証で頻繁に使用されます。繊維強化プラスチックの曲げ試験には、3点および4点の曲げ試験があります。一般的な標準試験方法は次のとおりです:

試験装置全体の剛性が十分であるか、または試験装置内での変形が試験ソフトウェアで評価し、補正できる場合、3点曲げ試験ではしばしば機械の変位を使用することができます。
一方、4点曲げ試験では、試験片の中央でたわみを測定するために適切な変位計測システムが必要です。

曲げ試験
ISO 14125 、ASTM D7264
複合材の曲げ試験(3点、4点曲げ試験)は重要な機械的特性値を簡単に測定するために実施されます。
行先 曲げ試験
3点曲げ試験 ASTM D790
ASTM D790規格では、剛性および半剛性のプラスチック、および長繊維強化材を使用した繊維複合材料の3点曲げ試験について記載しています。
行先 3点曲げ試験 ASTM D790

積層間せん断強さ (ILSS)

積層間せん断強さ (ILSS)を測定する試験は、繊維強化プラスチックの品質保証に頻繁に使用される、最も一般的な静的試験の1つです。比較的小さな試験片だけが必要で、試験自体は迅速かつ簡単に行え、試験で決定される最大力だけが評価のために関連します。

積層間せん断強さ (ILSS)試験のための確立された試験規格はISO 14130、EN 2377、EN 2563、およびASTM D2344です。

これらの4つの規格は、長さ、幅、および厚さの試験片の寸法に異なる要件を使用することがありますが、すべて長方形の試験片の形状を説明しています。ASTM D2344によれば、圧力容器やパイプの壁から取られたような曲線状の試験片も説明しています。

ILSS試験に使用される試験アレンジは、試験規格で指定された非常に低い許容差を満たす必要があります。

積層間せん断強さ ILSS
複合材料の積層面間のせん断強度を表し、ショートビームせん断試験を使用して決定されます。
行先 積層間せん断強さ ILSS

積層体内部エネルギー解放率(Interlaminar Energy Release Rate)の決定試験

 

複合材のラミネートの剥離挙動を理解するために、破壊力学の試験方法を使用して、臨界エネルギー解放率および定常クラック成長中のエネルギー解放率を決定します。試験片を製造するには、非常に薄く非粘着性のプラスチックフィルム(テフロンフィルムがよく使われます)によってラミネートの中心面に人工的な裂け目が作成されたラミネートが必要です。

試験方法には、クラック面に垂直な引張荷重によるき裂進展(モードI)と、ラミネート断面にせん断荷重によるき裂進展(モードII)が最も一般的に行われます。ラミネート内のき裂進展を計算するための数値法の構成には、ミックスモードI+II荷重の追加試験方法があります:

  • モードI DCB (ダブルカンチレバービーム)試験 ISO 15024、EN 6033、ASTM D5528、エアバスAITM 1-0005およびボーイング BSS 7273に準拠
  • モードII ENF(エンドノッチ曲げ)試験 ASTM D7905、EN 6034、エアバスAITM 1-0006およびボーイングBSS 7273に準拠
  • モードII C-ELS(校正済みエンドロードスプリット)試験 ISO 15114に準拠
  • ミックスモード I+II MMB(ミックスモード曲げ)試験 ASTM D6671に準拠
エネルギー解放率(G)
エネルギー解放率は破壊力学特性値に属し、モードIとモードIIが測定対象となります。
行先 エネルギー解放率(G)

衝撃後圧縮 (CAI)せん断試験

 

衝撃後圧縮 (CAI) 試験は、衝撃損傷後のラミネートの圧縮残留強度を測定するために使用される試験方法です。試験される試験片は、それぞれの試験規格で指定された衝撃エネルギーで事前に損傷を受けます。この方法により、特に航空宇宙産業で衝撃荷重がかかる可能性のある複合構造において、コンポーネントの安全性と信頼性を確保するために、複合積層板の損傷耐性について結論を引き出すことができます。

CAI 試験では次のテスト方法が確立されています:ASTM D7136 および ASTM D7137, ISO 18352、エアバス AITM 1-0010ボーイングBSS 7260 type II.。

 

衝撃後圧縮 CAI
ASTM D7136、ASTM D7137、ISO 18352、エアバス AITM 1.0010、ボーイング BSS 7260 type II
この試験は、岩や鳥に当たった場合、または事故で損傷を受けた場合に、航空機または車両に発生する可能性がある損傷を測定するために実施されています。
行先 衝撃後圧縮 CAI

支持強度と接合部強度

 

繊維強化プラスチック積層板自体の機械的特性値に加えて、複合構造のレイアウトや設計を目的とした接合部の強度を測定するための試験も行われます。

この目的で使用される標準化された試験方法は、次の3つの領域に大別できます:

オーバーラップせん断
ASTM D5868、EN 6060、エアバスAITM 1-0019
せん断試験は積層間の接着強度の比較のために行われます。
行先 オーバーラップせん断

複合材の疲労試験

 

複合積層板の疲労挙動を判定し、S-N 曲線を導き出すには、通常、脈動引張荷重下で動的繰り返し試験が実行されます。該当する標準化された動的複合材料試験は ASTM D3479 および ISO 13003 です。ISO 13003では、動的周期曲げ荷重下での複合疲労試験についても説明しています。

その他の標準化された動的複合試験方法は次のとおりです:

  • ASTM D7615に準拠したオープンホール引張およびオープンホール圧縮疲労
  • ASTM D6115 に準拠したモード I 疲労荷重下での層間き裂進展
  • ASTM D6873 および エアバス AITM 1-0074 に準拠したボルト接続の疲労および動的ベアリングレスポンス試験
  • エアバス AITM 1-0075 には、ILSS、ILTS、OHT & OHC、FHT & FHC、プルスルー、CAI、ラップせん断疲労試験の実行方法に関する概要情報が含まれています。
動的繰返し試験メソッド
特に医療工学において、試験片、構造要素、および部品の耐久性を測定するために使用されます。
行先 動的繰返し試験メソッド

複合材のモジュール試験システム

多くの試験をこなさなければならない大規模な試験ラボは、個々の試験方法に対して異なる試験装置保有し、冶具の段取り換え等にかかる時間とコストを最小限に抑えています。 標準化された試験方法は、以下の荷重レンジで分ける事ができます:

  • 1 kNまでの荷重:曲げ試験、エネルギー解放率、単一フィラメントの引張試験
  • 10 kNまでの荷重:せん断試験(例:IPS、ILSS、Vノッチ)、フィラメントストランドの引張試験、UD 90°引張試験、厚さ方向の引張試験
  • 最大100kNの荷重UD0°引張試験、ラミネートの厚さが薄い場合のMD引張試験、ISO、ASTM、EN規格の圧縮試験、ノッチ圧縮試験、ベアリング圧力試験
  • 100 kNを超える荷重:相応のラミネート厚さを伴うエアバス規格での引張および圧縮試験、衝撃後の圧縮

複数の試験機への投資が意味をなすほど試験数が多くない、あるいは同じ試験試験を相当数行わない等の場合、代替の選択肢は1の試験機を装備し、最短の労力で冶具の段取り換えなどを行い、多くの試験メッソドに対応する事です。

ツビックローエルは、このようなニーズに応えるために、電気機械式およびサーボ油圧式試験機用のモジュール式試験機コンセプトを開発しました。このモジュール式システムの利点は明らかです:すべての冶具とツール、伸び計ソフトウェア、保護パネル、そして恒温槽はモジュール式で、一緒に動作するように設計されています。すべてのコンポーネントが後付けできるという事実は、このシステムを将来にわたって有効に使えることを意味しています。

それぞれの要件に最適なソリューションをお探しの場合は、当社の業界専門家にお問い合わせください。

私たちの業界エキスパートへご連絡お待ちしています。

ご要望に応じてご提案をさせていただきます。

お問い合わせ

名前 タイプ サイズ ダウンロード
  • 業種別パンフレット: 複合材料 PDF 7 MB
  • プレゼンテーション:複合材試験の概要 PDF 2 MB

実際のプロジェクトの例

Top