Jump to the content of the page

University Partnerships

ZwickRoell continuously supports students of universities and institutes of higher education with their bachelor, master, and doctoral theses. ZwickRoell can often lend support by providing test equipment needed for their scientific work. Through this work, new and improved test methods and products are developed, which in turn, enhance ZwickRoell's own portfolio. We have developed close working relationships with universities and institutes over the years. ZwickRoell's expertise in materials testing and engineering coupled with the scientific analyses conducted by our university partners create this type of collaborative partnership.

Name Type Size Download
  • Industry brochure: Academia PDF 4 MB

Micro grips

Over the last few years, the demand for testing solutions that accommodate smaller and smaller specimens has grown. Sometimes specimens are small because they are taken from components with small geometries and sizes, or sometimes it is useful to examine the scaling effects of the material characteristics. Even in the fields of standardization, standard mini-specimens have already been defined for various materials.

In this context, ZwickRoell has begun a joint project with the Lucerne University of Applied Sciences and Arts aimed at optimizing how such mini-specimen are handled.

For this project, a new specimen grip for micro tensile specimens has been designed as part of a bachelor's thesis. The paper examines both the handling and alignment of small specimens.

Special Clamping with Linear Guide

In order to better accommodate specimens, the entire specimen grip is removed from the machine and placed ergonomically on the table. The specimen is positioned on a carriage and centered in the grips. The carriage is then removed and the upper jaw is moved toward the specimen and fixed in place.

Now the entire specimen grip can be hung by means of a special mount in the testing machine. This procedure, with the help of a linear guide, ensures that angled pulling and other parasitic forces are minimized.

By using laserXtens compact HP, even the smallest specimens with gauge lengths of less than 3 mm can be characterized mechanically in their entirety.

Optical Strain Measurement

Direct strain measurement is particularly important. A high resolution and a high degree of accuracy is vital since the absolute deformation often equals only a few µms due to the dimensions of the specimen. That is why laserXtens compact HP is the ideal extensometer. Only one non-contact measuring system can deliver reliable test results for specimens with these dimensions.

The image below shows a titanium alloy specimen from the IISc Bangalore with a complete stress-strain curve. The black curve was measured by laserXtens compact and the red curve was measured with the moving crosshead.

Biaxial Test Fixture

ZwickRoell decided to design a fixture for a biaxial tensile test based on a publication submitted by Nihon University for the 2011 ZwickRoell Science Award. In contrast to a standard biaxial testing machine, the multi-axial stress state is achieved in a universal testing machine by means of a deflector.

The deflector is mounted in a standard testing machine and a compressive force is applied across four arms to a cruciform specimen in the X and Y directions. The force values are recorded by four load cells, and the deformation of the specimen is recorded from below by a videoXtens or laserXtens system.

Continuous Development

Fx, Fy, εx and εy, as well as all dimensions derived from these, can be determined. Furthermore, this fixture fulfills all requirements of ISO 16842 "Metallic materials - Sheet and strip - Biaxial tensile testing method using a cruciform test piece" of 2014.

At the Institute of Metal Forming and Casting at the TU Munich a prototype for this application is being tested for further examination of the ductility of sheet metal. The goal of this is to find out to what degree this fixture can be used to determine the forming limit of sheet metal. and improve both the specimen geometry specified in the ISO standard and the test setup. www.utg.de

Video: Biaxial test fixture

Cooperation with Other Universities and Industry Partners

Together with the company GOM, the first tests using an ARAMIS system have been performed. They show the strain distribution when a specimen with geometries defined in ISO16842 is tested. These initial measurements were the impetus for close cooperation with TU Munich.

If you are looking for the optimal solution for each of your requirements, please contact our industry experts.

Get in contact with our industry experts.

We will be happy to discuss your needs.

Contact us

Top