Jump to the content of the page

Testing of Sheet Metal Forming Properties in Automotive Engineering

Good ductility properties are in great demand for thin sheet. Typical forming processes, such as deep drawing and stretch forming are regulated by standard testing methods. ZwickRoell's BUP testing machines for sheet metal forming test these properties with drawing forces up to 1,000 kN. Another important but complex test is the determination of the forming limit curve, from which engineers can derive limit strains which should not be exceeded during forming processes. ZwickRoell works in close collaboration with highly specialized partners to develop the optical measurement technology required for recording strains during the drawing process.

Name Type Size Download
  • Industry brochure: Automotive PDF 4 MB

Hot Forming

  • In the last few years, press hardening has become an increasingly important production method in hot forming in order to meet specific requirements for a lower overall weight with higher crash safety.
  • This method's objective is to achieve equal or higher stiffness of profile sheet metal parts than would be achievable with conventional forming technology, while using a reduced amount of material.
  • Numerous automobile manufacturers use these processes to produce structural parts of the chassis, such as A and B columns, transmission tunnels, carriers of front and rear bumpers, door sills, door reinforcements, side members, roof racks, and roof frames.
  • Compared to conventional forming, hot forming is naturally more complex and allows you to produce components with high //strength, great geometric complexity, and minimized //springback effects in a short amount of time. The specimens are removed from the end product and the strength is determined not only in a classic hardness test but also in a tensile and flexure test.

Tensile Tests

Tensile Tests

Simple Tensile Test
Tensile Test with r- and n-Value Determination
Biaxial Tensile Test
211_Tensile test

Simple Tensile Test

ZwickRoell offers a wide range of standard testing systems up to 2,500 kN for determining characteristic values from tensile tests; these systems also provide high-precision testing under high loads.

212_Tensiletest_r-n-value

Tensile Test with r- and n-Value Determination

Thin sheets are frequently required to possess good ductility combined with high strength. The r- and n-values are determined in the tensile test in order to characterize the forming properties. The n-value describes the hardening (increase in strain) during plastic deformation up to uniform elongation, while the r-value describes the vertical anisotropism. The n-value is determined from the tensile stress data and strain values; for the r-value the transverse strain on the tensile specimen is also measured.

213_Biax

Biaxial Tensile Test

A distinctive feature is the two-axis tensile test, which is used to determine the deformation properties of the material. It is primarily employed in research and development, as it allows defined stress values to be set and investigated at the intersection point of the specimen. ZwickRoell produces these biaxial testing machines to customer requirements. In most cases, strain is measured optically. There are two different solutions available from ZwickRoell. ZwickRoell works together with partners to create solutions for measuring high resolution strain distribution.

Fracture Toughness Testing

Fracture toughness testing KIc is an important characteristic for metal materials in safety-related applications such as aircraft construction, power plant construction, and even automotive engineering. Fracture toughness is determined using a specimen in which an artificial crack has been introduced. The specimen is subjected to load until it breaks. Fracture toughness can be determined from the load-deformation curve and the length of the crack.

Flexure Test

The 3-point flexure test serves to not only determine the characteristics of the flexural properties but also visually evaluates the flexural edge. In particular, the behavior of the weld seams are visually examined during the flexure test. ZwickRoell’s range of flexure test kit options combined with adaptations to existing specimen holders provide an ideal solution.

Draw Bead Test

This test is designed to determine the coefficient of friction between a steel sheet and a deep drawing tool in order to determine the ideal lubricant for this forming process, thereby enabling cracks and creases to be avoided and ensuring an optimum deep drawing process. The draw bead unit can be easily installed in a standard testing machine. For the test, a sheet metal strip with typical dimensions (300 mm x 30 mm x 2 mm) is axially gripped in the upper standard specimen grip and the draw bead tool is closed. The strip is then drawn through the draw bead tool. This procedure can be repeated automatically, with a variable number of repetitions. The digitally controlled clamping force of the draw bead tool guarantees accurate and reproducible test results. The tool die can be quickly interchanged to meet different testing specifications.

High-Speed Tensile Test

Material behavior at high strain rates is critical for applications in the automotive industry. Accidents involve high material deformation speeds which it is essential to take into account in automobile design. The necessary material properties are determined with high-speed tensile tests using high-speed tensile testing machines from ZwickRoell's HTM series. These servo-hydraulic testing machines achieve deformation speeds of up to 20 m/s on specimens at forces up to 160 kN.

Small Plate Bending Test

The small plate bending test determines the bending angle of vehicle body panel sheets determine the deformation behavior and the susceptibility to metal materials failing during forming processes with dominant bending elements (e.g. hemming operations) or during crash loading. You can perform these tests with special test kits in 3- or 4-point flexure tests. 

We look for and find the optimal testing solution for every one of your requirements.

Get in contact with our industry experts.

We look forward to discussing your needs.

 

Contact us

Related Products

Top